全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Al-Zn-In-Si牺牲阳极在不含/含硫酸盐还原菌海泥环境中的电化学性能研究
Study on the Electrochemical Performance of Al-Zn-In-Si Sacrificial Anode in Sea Mud Environment with/without Sulfate Reducing Bacteria

DOI: 10.12677/HJCET.2024.141005, PP. 32-46

Keywords: 海泥,SRB,阴极保护,铝基牺牲阳极,电化学容量,腐蚀行为
Sea Mud
, SRB, Cathodic Protection, Aluminum Based Sacrificial Anode, Electrochemical Capacity, Corrosion Behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:分析A13型Al-Zn-In-Si牺牲阳极在不含/含硫酸盐还原菌海泥环境中的电化学性能。方法:进行4天强制电流标准试验,采用扫描电子显微镜(SEM)、能谱分析(EDS)及三维超景深显微镜分析牺牲阳极腐蚀特征及表面元素含量的变化,对比研究了A13型Al-Zn-In-Si牺牲阳极在不含与含硫酸盐还原菌海泥环境中的电化学性能。结果:不含SRB海泥环境中牺牲阳极的电化学容量和电化学效率分别为1908.77 Ah/kg和66.78%,满足相关标准要求;而含SRB海泥环境中牺牲阳极的电化学容量和效率仅为1238.67 Ah/kg和43.33%,不满足牺牲阳极阴极保护在海泥环境下的设计标准。同时,含SRB海泥环境中铝阳极表面形成了大量密集分布的腐蚀坑洞,表现为典型的不均匀腐蚀特征,最大腐蚀深度达到1230 μm,约是不含SRB海泥环境中铝阳极腐蚀坑深(约300 μm)的4倍。结论:在含有SRB海泥环境中,A13型Al-Zn-In-Si牺牲阳极电化学容量和效率仅为1238.67 Ah/kg和43.33%,已经不能满足阴极保护设计标准要求。因此,在海泥环境中铝牺牲阳极的应用必须充分关注SRB这一因素,尤其是铝牺牲阳极需要长周期服役于海泥环境中的情况。
Objective: To analyze the electrochemical performance of A13 type Al-Zn-In-Si sacrificial anode in sea mud environment without/with sulfate reducing bacteria. Methods: A 4-day forced current standard test was conducted. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and three-dimensional ultra-depth-of-field microscopy were used to analyze the corrosion characteristics of the sacrificial anode and the changes in surface element content. A comparative study was conducted on the electrochemical performance of A13 type Al-Zn-In-Si sacrificial anode in marine mud environments without and with sulfate reducing bacteria. Re-sults: The electrochemical capacity and electrochemical efficiency of the sacrificial anode in an SRB-free sea mud environment were 1908.77 Ah/kg and 66.78% respectively, meeting the re-quirements of relevant standards; while the electrochemical capacity and efficiency of the sacrificial anode in an SRB-containing sea mud environment were only 1238.67 Ah/kg and 43.33%, which do not meet the design standards of sacrificial anode cathodic protection in marine mud environment. At the same time, a large number of densely distributed corrosion pits were formed on the surface of the aluminum anode in the SRB-containing sea mud environment, showing typical uneven corrosion characteristics. The maximum corrosion depth reaches 1230μm, which is approximately 4 times the depth of the aluminum anode corrosion pit in an SRB-free sea mud environment (about 300 μm). Conclusion: In an environment containing SRB sea mud, the electrochemical capacity and efficiency of the A13-type Al-Zn-In-Si sacrificial anode are only 1238.67 Ah/kg and 43.33%, which cannot meet the cathodic protection design standard requirements. Therefore, the application of aluminum sacrificial anodes in marine mud environments must pay full attention to the factor of SRB, especially when aluminum sacrificial anodes need to serve in the marine mud environment for a long period of time.

References

[1]  佚名. 深中通道沉管隧道——世界首条大规模采用钢壳混凝土组合结构的沉管隧道[J]. 隧道与轨道交通, 2020(4): 64.
[2]  刘静. 国外著名跨海大桥的过去与杭州湾跨海大桥的未来[J]. 观察与思考, 2008(10): 32-33.
[3]  韩恩厚, 陈建敏, 宿彦京, 等. 海洋工程结构与船舶的腐蚀防护——现状与趋势[J]. 中国材料进展, 2014, 33(2): 65-76.
[4]  王春丽. 海洋环境复杂偶合体系腐蚀行为研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2013.
[5]  Chan, K., Xu, L. and Fang, H. (2002) Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-Reducing Bacteria. Environmental Science & Technology, 36, 1720-1727.
https://doi.org/10.1021/es011187c
[6]  Duan, J., Wu, S., Zhang, X., et al. (2008) Corrosion of Carbon Steel Influenced by Anaerobic Biofilm in Natural Seawater. Elec-trochimica Acta, 54, 22-28.
https://doi.org/10.1016/j.electacta.2008.04.085
[7]  Okabe, S., Odagiri, M., Ito, T. and Satoh, H. (2007) Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems. Applied & Environmental Microbiology, 73, 971-980.
https://doi.org/10.1128/AEM.02054-06
[8]  Ashassi-Sorkhabi, H., Moradi-Haghighi, M. and Zarrini, G. (2012) The Effect of Pseudoxanthomonas sp. as Manganese Oxidizing Bacterium on the Corrosion Behavior of Carbon Steel. Materials Science & Engineering C, 32, 303-309.
https://doi.org/10.1016/j.msec.2011.10.033
[9]  Ching, T.H., Yoza, B.A., Wang, R., et al. (2016) Biodegra-dation of Biodiesel and Microbiologically Induced Corrosion of 1018 Steel by Moniliella wahieum Y12. Interna-tional Biodeterioration & Biodegradation, 108, 122-126.
https://doi.org/10.1016/j.ibiod.2015.11.027
[10]  Xu, W., Han, E.H. and Wang, Z. (2019) Effect of Tannic Acid on Corrosion Behavior of Carbon Steel in NaCl Solution. Journal of Materials Science and Technology, 35, 64-75.
https://doi.org/10.1016/j.jmst.2018.09.001
[11]  Antony, P., Chongdar, S., Kumar, P. and Raman, R. (2007) Corrosion of 2205 Duplex Stainless Steel in Chloride Medium Containing Sulfate-Reducing Bacteria. Electrochim Acta, 52, 3985-3994.
https://doi.org/10.1016/j.electacta.2006.11.016
[12]  Duan, J., Hou, B. and Yu, Z. (2006) Characteristics of Sulfide Corrosion Products on 316L Stainless Steel Surfaces in the Presence of Sulfate-Reducing Bacteria. Materials Science & Engineering C, 26, 624-629.
https://doi.org/10.1016/j.msec.2005.09.108
[13]  Costello, J.A. (1974) Cathodic Depolarization by Sul-phate-Reducing Bacteria. South African Journal of Science, 70, 202-204.
[14]  Rosalbino, F., Zanicchi, G., Carlini, R., Angelini, E. and Marazza, R. (2012) Electrochemical Corrosion Behaviour of Sn-Ag-Cu (SAC) Eutectic Alloy in a Chloride Containing Environment. Materials and Corrosion, 63, 492-496.
https://doi.org/10.1002/maco.201005979
[15]  翁焕新, 高彩霞, 刘瓒, 等. 污泥硫酸盐还原菌(SRB)与硫化氢释放[J]. 环境科学学报, 2009, 29(10): 2094-2102.
[16]  刘伟, 李洪林, 吴海旭, 等. 金属材料SRB微生物腐蚀机理研究现状与进展[J]. 魅力中国, 2020(37): 251.
[17]  Beech, I.B. and Cheung, C.W.S. (1995) Interactions of Exopolymers Produced by Sulphate-Reducing Bacteria with Metal Ions. International Biodeterioration & Biodeg-radation, 35, 59-72.
https://doi.org/10.1016/0964-8305(95)00082-G
[18]  Ilhan-Sungur, E., Cansever, N. and Cotuk, A. (2007) Microbial Corrosion of Galvanized Steel by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio sp.). Corrosion Science, 49, 1097-1109.
https://doi.org/10.1016/j.corsci.2006.05.050
[19]  Starosvetsky, D. (2000) Effect of Iron Exposure in SRB Media on Pitting Initiation. Corrosion Science, 42, 345-359.
https://doi.org/10.1016/S0010-938X(99)00088-8
[20]  Castaneda, H. and Benetton, X.D. (2008) SRB-Biofilm Influence in Active Corrosion Sites Formed at the Steel-Electrolyte Interface When Exposed to Artificial Seawater Conditions. Corrosion Science, 50, 1169-1183.
https://doi.org/10.1016/j.corsci.2007.11.032
[21]  Rao, T.S., Kora, A.J., Anupkumar, B., Narasimhan, S.V. and Feser, R. (2005) Pitting Corrosion of Titanium by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio vulgaris). Corrosion Science, 47, 1071-1084.
https://doi.org/10.1016/j.corsci.2004.07.025
[22]  Chang, X., Chen, S., Gao, G., et al. (2009) Electrochemical Behavior of Microbiologically Influenced Corrosion on Fe3Al in Marine Environment. Acta Metallurgica Sinica, 22, 313-320.
https://doi.org/10.1016/S1006-7191(08)60104-0
[23]  龙晓竣. 钢壳沉管隧道海泥环境下阴极保护数值模拟优化设计[D]: [硕士学位论文]. 珠海: 中山大学, 2021.
[24]  龙晓竣, 方翔, 梅英杰, 等. Al-Zn-In-Si牺牲阳极在模拟海水及海泥环境中的电化学性能[J]. 表面技术, 2021, 50(11): 297-305.
[25]  Guan, F., Duan, J., Zhai, X., et al. (2020) Interaction between Sulfate-Reducing Bacteria and Aluminum Alloys—Corrosion Mecha-nisms of 5052 and Al-Zn-In-Cd Aluminum Alloys. Journal of Materials Science & Technology, 36, 55-64.
https://doi.org/10.1016/j.jmst.2019.07.009
[26]  Zhang, T., Wang, Z., Qiu, Y., et al. (2023) “Elec-trons-Siphoning” of Sulfate Reducing Bacteria Biofilm Induced Sharp Depletion of Al-Zn-In-Mg-Si Sacrificial Anode in the Galvanic Corrosion Coupled with Carbon Steel. Corrosion Science, 216, Article ID: 111103.
https://doi.org/10.1016/j.corsci.2023.111103
[27]  (2017) Cathodic Protection Design. DNVGL RP B401-2017.
[28]  陈旭立, 王志远. GB/T 4948-2002 铝-锌-铟系合金牺牲阳极[S]. 北京: 船舶标准化与质量出版社, 2011.
[29]  Guan, F., Zhai, X., Duan, J., Zhang, M. and Hou, B. (2016) Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization. PLOS ONE, 11, e0162315.
https://doi.org/10.1371/journal.pone.0162315
[30]  Liu, F., Zhang, J., Zhang, S., et al. (2012) Effect of Sul-phate Reducing Bacteria on Corrosion of Al-Zn-In-Sn Sacrificial Anodes in Marine Sediment. Materials and Cor-rosion, 63, 431-437.
https://doi.org/10.1002/maco.201005955
[31]  张杰, 等. 海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响[J]. 金属学报, 2010, 46(10): 1250-1257.
[32]  Zhu, Y.Y., Huang, Y.L., Huang, S.D. and Zhang, Y.Y. (2008) Hydrogen Permeation of 16mn Steel in Sea Mud with Sulfate Reducing Bacteria. Corrosion Science and Protection Technology, 20, 118-120.
[33]  曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008.
[34]  Zuo, R., Kus, E., Mansfeld, F. and Wood, T.K. (2005) The Importance of Live Biofilms in Corrosion Protection. Corrosion Science, 47, 279-287.
https://doi.org/10.1016/j.corsci.2004.09.006
[35]  Jia, R., Unsal, T., Xu, D., et al. (2018) Microbiologically Influenced Corrosion and Current Mitigation Strategies: A State of the Art Review. International Biodeterioration & Biodegradation, 137, 42-58.
https://doi.org/10.1016/j.ibiod.2018.11.007
[36]  闫军印. 混凝土中钢筋通电加速锈蚀与自然锈蚀的对比[J]. 山西建筑, 2012, 38(29): 141-142.
[37]  柴树松, 黄连清. 免维护骑车蓄电池发愁原因的分析[J]. 蓄电池, 2004, 41(1): 22-24.
[38]  Sheng, X., Ting, Y. and Pehkonen, S. (2006) The Influence of Sulphate-Reducing Bacteria Biofilm on the Corrosion of Stainless Steel AISI 316. Corrosion Science, 49, 2159-2176.
https://doi.org/10.1016/j.corsci.2006.10.040
[39]  刘文辉, 等. 金属腐蚀学原理[M]. 北京: 航空工业出版社, 1993.
[40]  Guan, F., Zhai, X., Duan, J., et al. (2017) Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy. Surface & Coatings Technology, 316, 171-179.
https://doi.org/10.1016/j.surfcoat.2017.02.057
[41]  Englezos, P. (1999) Ionic Equilibrium. American Chemi-cal Society, New York.
[42]  马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[43]  刘艳, 党志, 刘云, 等. 一株硫酸盐还原菌DSRBa的分离鉴定及特性分析[J]. 农业环境科学学报, 2011, 30(1): 176-182.
[44]  陈炜婷, 张鸿郭, 陈永亨, 罗定贵, 吴启航. pH、温度及初始铊浓度对硫酸盐还原菌脱铊的影响[J]. 环境工程学报, 2014, 8(10): 4105-4109.
[45]  Ocando, L., De Romero, M.F., Pérez, O., et al. (2007) Influence of Ferrous Ions, pH and H2S at the Interface on the Corrosion Mechanism of Iron by Sulfate-Reducing Bacteria. Revista Técnica De La Facultad De Ingeniería Universidad Del Zulia, 11, 223-233.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133