全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

引洮工程受水区径流演变规律分析
Analysis of Runoff Variation Law in the Water Receiving Area of Yintao Water Transfer Project

, PP. 1-12

Keywords: 河川径流,年际变化,年内分配,干旱半干旱区,调水工程受水区
Stream Runoff
, Inter-Annual Variation, Intra-Annual Distribution, Arid and Semi-Arid Regions, Water Re-ceiving Area of Water Transfer Project

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据引洮工程受水区四个水文站的1956~2022年实测径流数据,运用趋势检验、小波分析、贝叶斯变点分析模型等方法分析径流年际变化,采用不均匀系数、集中度和集中期等表征径流年内分配情况并研究其变化趋势,结果表明:受水区年径流整体呈显著减小趋势,在年代际差异上存在较强跳跃性,最大概率突变年在1990年前后,此后减小趋势愈发显著;年径流大尺度主周期振幅在2005年以后显著减小,小尺度主周期振荡愈发剧烈,呈现更复杂的变化态势,预计未来2~3年内持续减小;汛期径流显著减小,径流年内分配不均匀程度和集中程度降低。整体来看,受水区径流显著减小,年内分配发生变化,周期振荡愈发复杂,水资源安全保障不确定性加大,亟需优化调控引洮工程供水与水资源配置。
Based on observed runoff data from four hydrological stations in the receiving water area of the Yintao project from 1956 to 2022, a comprehensive analysis of annual runoff inter-annual variability was con-ducted using methods such as trend analysis, wavelet analysis, and Bayesian change-point models. Addi-tionally, characteristics of intra-annual runoff distribution, including the uneven coefficient, concentration degree, and concentration period, were employed to analyze their temporal changes. The results are as follows: The annual runoff in the receiving water area exhibits a significant decreasing trend, with pro-nounced decadal variability in runoff changes. The highest probability of a change-point occurring was around 1990, after which the declining trend became more prominent. On a larger scale, the amplitude of the main periodic oscillations in annual runoff showed a significant reduction after 2005, while small-er-scale oscillations became more intense. Consequently, the annual runoff displayed a more intricate changing pattern, with a projected continuation of reduction in the next 2~3 years. There is a significant decrease in flood season runoff in the receiving area, accompanied by a decrease in the unevenness and concentration degree of intra-annual distribution. Overall, the runoff in the water receiving area signifi-cantly reduced, the intra-annual distribution changes, the cycle oscillation is more complex, the uncer-tainty of water resources security increases, there’s an urgent need to optimize the regulation of the water supply of Yintao project and water resources allocation.

References

[1]  ALLAN, R. P., BARLOW, M., BYRNE, M. P., et al. Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Science, 2020, 1472: 49-75.
https://doi.org/10.1111/nyas.14337
[2]  CHAGAS, V. B. P., CHAFFE, P. L. B. and BL?SCHL, G. Climate and land management accelerate the Brazilian water cycle. Nature Communications, 2022, 13: 5136.
https://doi.org/10.1038/s41467-022-32580-x
[3]  VILLARINI, G., WASKO, C. Humans, climate and streamflow. Nature Climate Change, 2021, 11: 725-726.
https://doi.org/10.1038/s41558-021-01137-z
[4]  BERGHUIJS, W. R., LARSEN, J. R., VAN EMMERIK, T. H. M., et al. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resources Research, 2017, 53(10): 8475-8486.
https://doi.org/10.1002/2017WR021593
[5]  WANG, G. Q., ZHANG, J. Y., HE, R. M., et al. Runoff sensitivity to climate change for hydro-climatically different catchments in China. Stochastic Environmental Research and Risk Assessment, 2017, 31: 1011-1021.
https://doi.org/10.1007/s00477-016-1218-6
[6]  LUO, Y. Y., YANG, Y. T., YANG, D. W., et al. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. Journal of Hydrology, 2020, 590: 125389.
https://doi.org/10.1016/j.jhydrol.2020.125389
[7]  GREVE, P., KAHIL, T., MOCHIZUKI, J., et al. Global assessment of water challenges under uncertainty in water scarcity projections. Natural Sustainability, 2018, 1: 486-494.
https://doi.org/10.1038/s41893-018-0134-9
[8]  MANN HENRY, B. Nonparametric tests against trend. Econometrica, 1945, 13(3): 245-259.
https://doi.org/10.2307/1907187
[9]  章诞武, 丛振涛, 倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展, 2013, 24(4): 490-496. ZHANG Danwu, CONG Zhentao and NI Guangheng. Comparison of three Mann-Kendall methods based on the China’s mete-orological data. Advances in Water Science, 2013, 24(4): 490-496. (in Chinese)
[10]  YUE, S., PILON, P., PHINNEY, B., et al. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 2002, 16(9): 1807-1829.
https://doi.org/10.1002/hyp.1095
[11]  BEN AISSIA, M. A., CHEBANA, F., OUARDA, T. B. M. J., et al. Dependence evolution of hydrological characteristics, applied to floods in a climate change context in Quebec. Journal of Hydrol-ogy, 2014, 519: 148-163.
https://doi.org/10.1016/j.jhydrol.2014.06.042
[12]  许继军, 杨大文, 雷志栋, 等. 长江流域降水量和径流量长期变化趋势检验[J]. 人民长江, 2006, 37(9): 63-67. XU Jijun, YANG Dawen, LEI Zhidong, et al. Examination of long-term trends in precipitation and runoff over the Yangtze River Basin. Yangtze River, 2006, 37(9): 63-67. (in Chinese)
[13]  王跃峰, 陈莹, 陈兴伟. 基于TFPW-MK法的闽江流域径流趋势研究[J]. 中国水土保持科学, 2013, 11(5): 96-102. WANG Yuefeng, CHEN Ying and CHEN Xingwei. Runoff trend detection in the Minjiang River Basin with TFPW-MK method. Science of Soil and Water Conservation, 2013, 11(5): 96-102. (in Chinese)
[14]  熊立华, 周芬, 肖义, 等. 水文时间序列变点分析的贝叶斯方法[J]. 水电能源科学, 2003(4): 39-41. XIONG Lihua, ZHOU Fen, XIAO Yi, et al. Bayesian method for detecting change-points of hydrological time series. Water Re-sources and Power, 2003(4): 39-41. (in Chinese)
[15]  邓鹏鑫, 邴建平, 贾建伟, 等. 汉江流域1956-2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(9): 2132-2141. DENG Pengxin, BING Jianping, JIA Jianwei, et al. Pattern of spatio-temporal variability of flood season precipitation in Han-jiang River Basin between 1956 and 2016. Resources and Environment in the Yangtze Basin, 2018, 27(9): 2132-2141. (in Chi-nese)
[16]  李淼, 夏军, 陈社明, 等. 北京地区近300年降水变化的小波分析[J]. 自然资源学报, 2011, 26(6): 1001-1011. LI Miao, XIA Jun, CHEN Sheming, et al. Wavelet analysis on annual precipitation around 300 years in Beijing area. Journal of Natural Resources, 2011, 26(6): 1001-1011. (in Chinese)
[17]  杨远东. 河川径流年内分配的计算方法[J]. 地理学报, 1984, 39(2): 218-227. YANG Yuandong. Calculation method for annual distribution of river runoff. Acta Geographica Sinica, 1984, 39(2): 218-227. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133