Climate change is the phrase used to describe long-term changes in temperatures and weather patterns. Changes in the atmosphere and their interactions with diverse geologic, chemical, biological, and geographic variables are the main contributors to this cyclical adjustment of the Earth’s climate. Such changes may be induced purposefully, because of burning fossil fuels, clearing forests, and raising animals, or they may be natural, brought on by significant volcanic eruptions or variations in the sun’s activity. By significantly increasing the amount of greenhouse gases already in the atmosphere, this heightens the greenhouse effect and contributes to global warming. This work includes several additional theoretical and practical explanations of sustainable development. The theoretical work encompasses hundreds of researches that identify requirements for how development routes might satisfy sustainable development (SD) criteria using economic theory, complex systems approach, ecological science, and other techniques. The agreements made by the Parties in various nations across the world will consider a wide range of perspectives about what would be considered undesirable effects on the environment, the climate system, sustainability, economic growth, or food production.
References
[1]
Longair, M. (2021) James Croll, Celestial Mechanics, and Climatic Change. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 112, 231-238.
[2]
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T. and Minx, J.C., Eds. (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Cambridge University Press, Cambridge and New York.
[3]
Lyons, T.W., Diamond, C.W., Planavsky, N.J., Reinhard, C.T. and Li, C. (2021) Oxygenation, Life, and the Planetary System during Earth’s Middle History: An Overview. Astrobiology, 21, 906-923. https://doi.org/10.1089/ast.2020.2418
[4]
IPCC (2007) Climate Change: The Physical Science Basis, Contribution from Working Group I to the Fourth Assessment Report, Policy Maker Summary. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[5]
Takahashi, K., Birkmann, J., Luber, G., O’Neill, B., Berkhout, F., Dube, P., Foden, W., Greiving, S., Hsiang, S., Johnston, M., Keller, K., Kleypas, J., Kopp, R., Licker, R., Peres, C., Price, J., Robock, A., Schlenker, W., Stepp, J.R., Tol, R. and van Vuuren, D. (2014) Chapter Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the 5th Assessment Report of the Intergovernmental Panel on Climate Change.
[6]
Steffen, W., Leinfelder, R., Zalasiewicz, J., Waters, C.N., Williams, M., Summerhayes, C., Barnosky, A.D., Cearreta, A., Crutzen, P., Edgeworth, M., Ellis, E.C., Fairchild, I.J., Galuszka, A., Grinevald, J., Haywood, A., do Sul, J.I., Jeande, C., McNeill, J.R., Odada, E., Oreskes, N., Revkin, A., Richter, D.B., Syvitski, J., Vidas, D., Wagreich, M., Wing, S.L., Wolfe, A.P. and Schellnhuber, H.J. (2016) Stratigraphic and Earth System approaches to defining the Anthropocene. Earth’s Future, 4, 324-345. https://doi.org/10.1002/2016EF000379
[7]
Chu, E.W. and Karr, J.R. (2017) Environmental Impact: Concept, Consequences, Measurement. In: Reference Module in Life Sciences, Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-809633-8.02380-3
[8]
Hoem, F.S., López-Quirós, A., van de Lagemaat, S.H.A., Etourneau, J., Sicre, M.-A., Escutia, C., Brinkhuis, H., Peterse, F., Sangiorgi, F. and Bijl, P.K. (2023) Late Cenozoic Sea-Surface-Temperature Evolution of the South Atlantic Ocean. Climate of the Past, 19, 1931-1949. https://doi.org/10.5194/cp-19-1931-2023
[9]
Hutchinson, D.K., Coxall, H.K., Lunt, D.L., Steinthorsdottir, M., de Boer, A.M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A.T., Kunzmann, L., Ladant, J.-B., Lear, C.H., Moraweck, K., Pearson, P.N., Piga, E., Pound, M.J., Salzmann, U., Scher, H.D., Sijp, W.P., Śliwínska, K.K., Wilson, P.A. and Zhang, Z. (2021) The Eocene-Oligocene Transition: A Review of Marine and Terrestrial Proxy Data, Models and Models-Data Comparisons. Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021
[10]
Hoem, F.S., Valero, L., Evangelinos, D., Escutia, C. and Bijl, P.K. (2021) Temperate Oligocene Surface Ocean Conditions Offshore of Cape Adare, Ross Sea, Antarctica. Climate of the Past, 17, 1423-1442. https://doi.org/10.5194/cp-17-1423-2021
[11]
Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, R.K. and Bohaty, M.S. (2017) An Antarctic Stratigraphic Record of Stepwise Ice Growth through the Eocene Oligocene Transition. GSA Bulletin, 129, 318-330. https://doi.org/10.1130/B31482.1
[12]
McKay, R.M., Escutia, C., De Santis, L., Donda, F., Duncan, B., Gohl, K., Gulick, S.P.S., Hernández-Molina, F.J., Hillenbrand, C.-D., Hochmuth, K., Kim, S., Kuhn, G., Larter, R., Leitchenkov, G., Levy, R.H., Naish, T.R., O’Brien, P., Pérez, L.F., Shevenell, A. and Williams, T. (2022) Cenozoic History of Antarctic Glaciation and Climate from Onshore and Offshore Studies. In: Florindo, F., et al., Eds., Antarctic Climate Evolution, Elsevier, Amsterdam, 41-164.
[13]
Joeckel, R.M. and Fielding, C.R. (2018) New Insights into Carboniferous Cyclothems. The Fourth Biennial Field Conference of the American Association of Petroleum Geologists, (AAPG) Midcontinent Section Fourth Biennial Field Conference Abstracts and Guidebook. University of Nebraska-Lincoln, Lincoln.
[14]
Dahl, T.W. and Arens, S.K.M. (2020) The Impacts of Land Plant Evolution on Earth’s cliMate and Oxygenation State—An Interdisciplinary Review. Chemical Geology, 547, Article 119665. https://doi.org/10.1016/j.chemgeo.2020.119665
[15]
Frei, R., Gaucher, C., Poulton, S.W., et al. (2009) Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461, 250-253. https://doi.org/10.1038/nature08266
[16]
Feulner, G. (2012) The Faint Young Sun Problem. Reviews of Geophysics, 50, RG2006. https://doi.org/10.1029/2011RG000375
[17]
Olson, J.M. (2006) Photosynthesis in the Archean Era. Photosynthesis Research, 88, 109-117. https://doi.org/10.1007/s11120-006-9040-5
[18]
Hoffman, P.F. and Schrag, D.P. (2002) The Snowball Earth hypothesis: Testing the Limits of Global Change. Terra Nova, 14, 129-155. https://doi.org/10.1046/j.1365-3121.2002.00408.x
[19]
Schrag, D.P. and Hoffman, P.F. (2001) Geophysics: Life, Geology and Snowball Earth. Nature, 409, 306. https://doi.org/10.1038/35053170
[20]
Sluijs, A. (2008) Carbon Burp and Transient Global Warming during the Paleocene-Eocene Thermal Maximum. PAGES News, 16, 9-11. https://doi.org/10.22498/pages.16.1.9
[21]
Stuijs, A. and Brinkhuis, H. (2008) Rapid Carbon Injection and Transient Global Warming during the Paleocene-Eocene Thermal Maximum. Netherlands Journal of Geosciences—Geologie en Mijnbouw, 87, 201-206. https://doi.org/10.1017/S0016774600023271
[22]
McInerney, F.A. and Wing, S.L. (2011) The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of Earth and Planetary Sciences, 39, 489-516. https://doi.org/10.1146/annurev-earth-040610-133431
[23]
Berger, W.H. (1990) The Younger Dryas Cold Spell—A Quest for Causes. Palaeogeography, Palaeoclimatology, Palaeoecology, 89, 219-237. https://doi.org/10.1016/0031-0182(90)90063-D
[24]
Pearce, C., Seidenkrantz, M.-S., Kuijpers, A., Massé, G., Reynisson, N.F. and Kristiansen, S.M. (2013) Ocean Lead at the Termination of the Younger Dryas Cold Spell Ocean Lead at the Termination of the Younger Dryas Cold Spell. Nature Communications, 4, Article No. 1664. https://doi.org/10.1038/ncomms2686
[25]
Lohmann, G., Butzin, M., Eissner, N., Shi, X. and Stepanek, C. (2020) Abrupt Climate and Weather Changes across Time Scales. Paleoceanography and Paleoclimatology, 35, e2019PA003782. https://doi.org/10.1029/2019PA003782
[26]
Dokken, T., Nisancioglu, K.H., Li, C., Battisti, D.S. and Kissel, C. (2013) Dansgaard-Oeschger Cycles: Interactions between Ocean and Sea Ice Intrinsic to the Nordic Seas. Paleoceanography and Paleoclimatology, 28, 491-502. https://doi.org/10.1002/palo.20042
[27]
Borzenkova, I., Zorita, E., Borisova, O., Kalniņa, L., Kisielienė, D., Koff, T., Kuznetsov, D., Lemdahl, G., Sapelko, T., Stančikaitė, M. and Subetto, D. (2015) Climate Change during the Holocene (Past 12,000 Years). In: The BACC II Author Team, Eds., Second Assessment of Climate Change for the Baltic Sea Basin, Springer, Cham, 25-49. https://doi.org/10.1007/978-3-319-16006-1_2
[28]
Maslin, M.A., Brierley, C.M., Milner, A.M., Shultz, S., Trauth, M.H. and Wilson, K.E. (2014) East African Climate Pulses and Early Human Evolution. Quaternary Science Reviews, 101, 1-17. https://doi.org/10.1016/j.quascirev.2014.06.012
[29]
Westling, L. (2022) Deep History, Climate Change, and the Evolution of Human Culture. In: Elements in Environmental Humanities, Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009257343
[30]
Van den Berg, J., Van de Wal, R.S.W. and Oerlemans, H. (2008) A Mass Balance Model for the Eurasian Ice Sheet for the Last 120,000 Years. Global and Planetary Change, 61, 194-208. https://doi.org/10.1016/j.gloplacha.2007.08.015
[31]
Malmierca-Vallet, I., Sime, L.C. and The D-O Community Members (2022) Dansgaard-Oeschger Events in Climate Models: Review and Baseline MIS3 Protocol. Climate of the Past, 19, 915-942. https://doi.org/10.5194/egusphere-2022-707
[32]
Monier, E. and Gao, X. (2015) Climate Change Impacts on Extreme Events in the United States: An Uncertainty Analysis. Climatic Change, 131, 67-81. https://doi.org/10.1007/s10584-013-1048-1
[33]
Zhou, Y.X., McManus, J.F., Jacobel, A.W., Costa, K.M., Wang, S.Y. and Caraveo, B.A. (2021) Enhanced Iceberg Discharge in the Western North Atlantic during All Heinrich Events of the Last Glaciation. Earth and Planetary Science Letters, 564, Article No. 116910. https://doi.org/10.1016/j.epsl.2021.116910 https://www.sciencedirect.com/science/article/pii/S0012821X21001692
[34]
Munk, W. (2002) Twentieth Century Sea Level: An Enigma. Proceedings of the National Academy of Sciences of the United States of America, 99, 6550-6555. https://doi.org/10.1073/pnas.092704599
[35]
Suggate, R.P. and Almond, P.C. (2005) The Last Glacial Maximum (LGM) in Western South Island, New Zealand: Implications for the Global LGM and MIS 2. Quaternary Science Reviews, 24, 1923-1940. https://doi.org/10.1016/j.quascirev.2004.11.007
[36]
Houben, A.J.P., Bijl, P.K., Sluijs, A., Schouten, S. and Brinkhuis, H. (2019) Late Eocene Southern Ocean Cooling and Invigoration of Circulation Preconditioned Antarctica for Full-Scale Glaciation. Geochemistry, Geophysics, Geosystems, 20, 2214-2234. https://doi.org/10.1029/2019GC008182
[37]
Zeder, M.A. (2008) Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion, and Impact. Proceedings of the National Academy of Sciences of the United States of America, 105, 11597-11604. https://doi.org/10.1073/pnas.0801317105
[38]
Zeder, M.A. (2011) The Origins of Agriculture in the Near East. Current Anthropology, 52, S221-S235. https://doi.org/10.1086/659307
[39]
Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M. and Lohmann, G. (2016) Glacial-Interglacial Changes in H218O, HDO and Deuterium Excess—Results from the Fully Coupled ECHAM5/MPI-OM Earth System Model. Geoscientific Model Development, 9, 647-670. https://www.geosci-model-dev.net/9/647/2016/ https://doi.org/10.5194/gmd-9-647-2016
[40]
Chappellaz, J., Barnola, J.M., Raynaud, D., Korotkevich, Y.S. and Lorius, C. (1990) Ice-Core Record of Atmospheric Methane over the Past 160,000 Years. Nature, 345, 127-131. https://doi.org/10.1038/345127a0
[41]
Dean, J.F., Middelburg, J.J., Röckmann, T., Aerts, R., Blauw, L.G., Egger, M., Jetten, M.S.M., de Jong, A.E.E., Meise, O.H., Rasigraf, O., Slomp, C.P., in’t, Zandt, M.H. and Dolman, A.J. (2017) Methane Feedback to the Global Climate System in a Warmer World. Reviews of Geophysics, 56, 207-250. https://doi.org/10.1002/2017RG000559
[42]
Hobson, T. (2020) The Effect of Stellar Flybys on the Perturbation of Earth’s Orbit. MSc Thesis Applied Mathematics, University of Lincoln, Lincoln.
[43]
Meier, H.E.M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M.P., Bartosova, A., Bonsdorff, E., Börgel, F., Capel, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O.B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J.J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P.A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O.P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R. and Zhang, W. (2022) Climate Change in the Baltic Sea Region: A Summary Climate Change in the Baltic Sea Region: A Summary. Earth System Dynamics, 13, 457-593. https://doi.org/10.5194/esd-13-457-2022
[44]
Hathaway, D.H. (2010) The Solar Cycle. Living Reviews in Solar Physics, 7, Article No. 1. https://doi.org/10.12942/lrsp-2010-1 http://www.livingreviews.org/lrsp-2010-1
[45]
McCormick, M.P., Thomason, L.W. and Trepte, C.R. (1995) Atmospheric Effects of the Mt Pinatubo Eruption. Nature, 373, 339-404. https://doi.org/10.1038/373399a0
[46]
Sobolev, S. and Brown, M. (2019) Surface Erosion Events Controlled the Evolution of Plate Tectonics on Earth. Nature, 570, 52-57. https://doi.org/10.1038/s41586-019-1258-4
[47]
Bertrand, C., Loutre, M.F. and Berger, A. (2002) High Frequency Variations of the Earth’s Orbital Parameters and Climate Change. Geophysical Research Letters, 29, 40-1-40-4. https://doi.org/10.1029/2002GL015622
[48]
Joseph, A. (2023) Chapter 2. Geological Timeline of Significant Events on Earth. In: Water Worlds in the Solar System, Elsevier, Amsterdam, 55-114. https://doi.org/10.1016/B978-0-323-95717-5.00020-7
[49]
Perera, F. (2018) Pollution from Fossil-Fuel Combustion Is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health, 15, Article 16. https://doi.org/10.3390/ijerph15010016
[50]
Brack, D. (2019) Background Analytical Study Forests and Climate Change. Background study prepared for the 14th session of the United Nations Forum on Forests. (UNFF, 2014). Forests and SDG13, March 2019.
[51]
Rafferty, J.P. (2010) Climate and Climate Change. Britannica Educational Publishing, New York, 368 p.
[52]
McMonigal, K., Larson, S., Hu, S. and Kramer, R. (2023) Historical Changes in Wind-Driven Ocean Circulation Can Accelerate Global Warming. Geophysical Research Letters, 50, e2023GL102846. https://doi.org/10.1029/2023GL102846
[53]
Glynn, P.W. (1984) WIDESPREAD coral Mortality and the 1982-83 El Niño Warming Event. Environmental Conservation, 11, 133-146. https://doi.org/10.1017/S0376892900013825
[54]
Webb, E.J. and Magi, B.I. (2022) The Ensemble Oceanic Niño Index. International Journal of Climatology, 42, 4989-5392. https://doi.org/10.1002/joc.7535
[55]
Oki, D.S. (2004) Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii. U.S. Geological Survey Scientific Investigations Report 2004-5080, 116 p. https://doi.org/10.3133/sir20045080
[56]
Leupold, M., Pfeiffer, M., Takaaki, K., Watanabe., Nakamura, N., Reuning, L., Blume, A., McClanahan, T., Mohammed, M., Kiriama, H., Garbe-Schönberg, D., Ritzrau, A.S. and Zinke, J. (2023) Mid-Holocene Expansion of the Indian Ocean Warm Pool Documented in coral Sr/Ca Records from Kenya. Scientific Reports, 13, Article No. 777. https://doi.org/10.1038/s41598-023-28017-0
[57]
McPhaden, M., Lee, T. and McClurg, D. (2011) El Niño and Its Relationship to Changing Background Conditions in the Tropical Pacific Ocean. Geophysical Research Letters, 38, L15709. https://doi.org/10.1029/2011GL048275
[58]
Deser, C., Hurrell, J.W. and Phillips, A.S. (2017) The Role of the North Atlantic Oscillation in European climate Projections. Climate Dynamics, 49, 3141-3157. https://doi.org/10.1007/s00382-016-3502-z
[59]
Middleton, G.D. (2012) Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies. Journal of Archaeological Research, 20, 257-307. https://doi.org/10.1007/s10814-011-9054-1
[60]
Mantua, N.J. and Hare, S. (2002) The Pacific Decadal Oscillation. Journal of Oceanography, 58, 35-44. https://doi.org/10.1023/A:1015820616384
[61]
Singh, S., Abebe, A., Srivastava, P. and Chaubey, I. (2021) Effect of ENSO Modulation by Decadal and Multi-Decadal Climatic Oscillations on Contiguous United States Stream Flows. Journal of Hydrology: Regional Studies, 36, Article 100876. https://doi.org/10.1016/j.ejrh.2021.100876
[62]
Clague, J.J., Menounos, B., Osborn, G., Luckman, B.H. and Koch, J. (2009) Nomenclature and Resolution in Holocene Glacial Chronologies. Quaternary Science Reviews, 28, 2231-2238. https://doi.org/10.1016/j.quascirev.2008.11.016
[63]
Diederich, J.L., Wennrich, V., Bao, R., Büttner, C., Bolten, A., Brill, D., Buske, S., Campos, E., Fernández-Galego, E., Gödickmeier, P., Ninnemann, L., Reyers, M., Ritter, B., Ritterbach, L., Rolf, C., Scheidt, S., Dunai, T.J. and Melles, M. (2020) A 68ka Precipitation Record from the Hyperarid Core of the Atacama Desert in Northern Chile. Global and Planetary Change, 184, Article 103054. https://doi.org/10.1016/j.gloplacha.2019.103054
[64]
Shivanna, K.R. (2022) Climate Change and Its Impact on Biodiversity and Human Welfare. Proceedings of the Indian National Science Academy, 88, 160-171. https://doi.org/10.1007/s43538-022-00073-6
[65]
Gaglioti, B.V., Mann, D.H., Wiles, G.C., Jones, B.M., Charlton, J., Wiesenberg, N. and Andreu-Hayles, L. (2019) Timing and Potential Causes of 19th -Century Glacier Advances in Coastal Alaska Based on Tree-Ring Dating and Historical Accounts. Frontiers in Earth Science, 7, Article 82. https://doi.org/10.3389/feart.2019.00082
[66]
White, S. (2014) The Real Little Ice Age. The Journal of Interdisciplinary History, 44, 327-352. https://doi.org/10.1162/JINH_a_00574
[67]
Alhaithloul, H.A.S., Abdein, M.A. and, Awad, N.S. (2022) Anticancer Effect of Citrullus colocynthis and Capparis spinosa against Human Cervix and Hepatocellular Cancer Cell Lines. Ecology, Environment and Conservation, 28, S586-S596. https://doi.org/10.53550/EEC.2022.v28i01s.081
[68]
Ghazzawy, H.S., Gouda, M.M., Awad, N.S., Al-Harbi, N.A., Alqahtani, M.M., Abdel-Salam, M.M., Abdein, M.A., Al-Sobeai, S.M., Hamad, A.A., Alsberi, H.M., Gabr, G.A. and Hikal, D.M. (2022) Potential Bioactivity of Phoenix dactylifera Fruits, Leaves, and Seeds against Prostate and Pancreatic Cancer Cells. Frontiers in Nutrition, 9, Article 998929. https://doi.org/10.3389/fnut.2022.998929
[69]
Abdel-Mageed, A.M., Osman, A.K.E., Awad, N.S. and Abdein, M.A. (2019) Evaluation of Antidiabetic Potentiality of Truffles and Balanites Aegyptiaca among Streptozotocin Induced Diabetic Rats. International Journal of Pharmaceutical Research & Allied Sciences, 8, 53-58.
[70]
Habeballa, R.S., Ahmedani, E.I., Awad, N.S. and Abdein, M.A. (2020) In Vitro Antiviral Activity of Illicium verum and Zingiber officinale Ethanolic Extracts. Medical Science, 24, 3469-3480.
[71]
Al-Harbi, N.A., Awad, N.S., Alsberi, H.M. and Abdein, M.A. (2019) Apoptosis Induction, Cell Cycle Arrest and in Vitro Anticancer Potentiality of Convolvulus spicatus and Astragalus vogelii. World Journal of Environmental Biosciences, 8, 69-75.
[72]
Osman, A.K. and Abdein, M.A. (2019) Karyological and Molecular Studies between Six Species of Plantago in the Northern Border Region at Saudi Arabia. Journal of Taibah University for Science, 13, 297-308. https://doi.org/10.1080/16583655.2019.1571400
[73]
Abdein, M.A., Wrda, H.N. and Osman, A.K. (2020) Genetic Characterization of Genus Tephrosia Pers. Based on Molecular markers in KSA. International Journal of Botany Studies, 5, 203-209.
[74]
Alqahtani, M.M., Abdein, M.A. and Abou El-Leel, O.F. (2020) Morphological and Molecular Genetic Assessment of Some Thymus Species. Biosciences Biotechnology Research Asia, 17, 103-113. https://doi.org/10.13005/bbra/2815
[75]
Alhaithloul, H. (2023) Phytochemical Screening of Some Medicinal Plants in Al Jouf, KSA. Open Journal of Ecology, 13, 61-79. https://doi.org/10.4236/oje.2023.132006
[76]
Abdein, M.A. (2018) Genetic Diversity between Pumpkin Accessions Growing in the Northern Border Region in Saudi Arabia Based on Biochemical and Molecular Parameters. Egyptian Journal Botany, 58, 463-476.
[77]
Osman, A.K. and Abdein, M.A. (2019) Floristic Diversity of Wadi Ar’ar, Saudi Arabia. Journal of Taibah University for Science, 13, 772-789. https://doi.org/10.1080/16583655.2019.1634177
[78]
Abdein, M.A. and Osman, A.K. (2020) Plant Diversity Assessment of Wadi Al-Hilali, Northern Border region, Saudi Arabia. International Journal of Botany Studies, 5, 87-95.
[79]
Rayan, A.M., Abdein, M.A. and Ibrahim, A.A. (2020) Associated Weeds of Some Agroecosystems in the Northern Border Region, KSA. International Journal of Botany Studies, 5, 345-351.
[80]
Delcourt, P.A., Nester, P.L., Delcourt, H.R., Mora, C. and Orvis, K.H. (2002) Holocene Lake-Effect Precipitation in Northern Michigan. Quaternary Research, 57, 225-233. https://doi.org/10.1006/qres.2001.2308
Berkelhammer, M. (2012) An Abrupt Shift in the Indian Monsoon 4000 Years Ago. In: Giosan, L., Eds., et al., Geophysical Monograph Series: Climate Landscapes and Civilization, American Geophysical Union, Washington DC. https://doi.org/10.1029/2012GM001207
[83]
Ou, Y., Iyer, G., Clarke, L., Edmonds, J., Fawcett, A.A., Hultman, N., Mcfarland, J.R., Binsted, M., Cui, R., Fyson, C., Geiges, A., Gonzales-Zuñiga, S., Gidden, M.J., Höhne, N., Jeffery, L., Kuramochi, T., Lewis, J., Meinshausen, M., Nicholls, Z., Patel, P., Uth, S.R., Rogelj, J., Waldhoff, S., Yu, S. and Mcjeon, H. (2021) Can Updated Climate Pledges Limit Warming Well below 2˚C? Science, 374, 693-695. https://doi.org/10.1126/science.abl8976
[84]
IEA (2021) Technical Note on the Emissions and Temperature Implications of COP26 Pledges. https://iea.blob.core.windows.net/assets/aa17bd09-2ad0-4d0a-b5aa-ee418900c4af/Theimpactsofnewemissionspledgesonlongtermtemperatures.pdf
[85]
Tai, K. (2021) National Trade Estimate Report on Foreign Trade Barriers. Office of the United States Trade Representative.
[86]
Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J.F., Tokgoz, S., Hayes, D.J. and Yu, T.-H.E. (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science, 319, 1238-1240. https://doi.org/10.1126/science.1151861
[87]
OECD (2009) The Economics of Climate Change Mitigation: Policies and Options for Global Act Ion beyond 2012. OECD, Paris.
[88]
OECD (2009) Cities, Climate Change and Multilevel Governance. Environment Working Papers, OECD, Paris.
[89]
Liu, H.-Y., Skandalos, N., Braslina, L., Kapsalis, V. and Karamanis, D. (2023) Integrating Solar Energy and Nature-Based Solutions for Climate-Neutral Urban Environments. Solar, 3, 382-415. https://doi.org/10.3390/solar3030022