|
基于分子动力学模拟的电化学界面储能虚拟仿真教学设计
|
Abstract:
电化学界面是电化学储能系统中的关键组成部分,电化学界面仿真实验在电化学实验教学中占有重要的地位。合理地设计基于分子动力学模拟算法的教学辅助仿真实验,使学生能够“看到”原子和分子层面的互动,从而深化对电化学原理的理解。基于经典伦纳德–琼斯(Lennard-Jones)势,采用分子动力学模拟技术构建多种典型电极/电解质界面模型,在模拟中引入与电化学实验测试中对应的循环伏安和恒流充放电技术,开展原位电化学充放电模拟,通过输出电极和电解质位置和数目动态变化曲线及原子位置演化轨迹,向学生展示了充放电过程中电极/电解质的微观结构变化。这种直观的展示不仅帮助学生更好地吸收和理解复杂的科学知识,而且激发了他们对学科的兴趣。同时,虚拟仿真还提高了教学的互动性和学生的参与度,有利于丰富实验内容增加实验趣味性提高教学质量。
Electrochemical interfaces play a crucial role in electrochemical energy storage systems, occupying a significant position in electrochemical experimental teaching. The rational design of teach-ing-assisted simulation experiments based on molecular dynamics simulation algorithms allows students to “visualize” the interactions at the atomic and molecular levels, thereby deepening their understanding of electrochemical principles. Utilizing the classical Lennard-Jones potential, various typical electrode/electrolyte interface models are constructed using molecular dynamics simula-tion technology. In the simulation, cyclic voltammetry and constant current charge-discharge techniques corresponding to electrochemical experimental tests are introduced. In-situ electrochemical charge-discharge simulations are conducted, demonstrating to students the dynamic changes in electrode/electrolyte microstructures through outputting curves depicting the dynamic variations in electrode and electrolyte positions and quantities, as well as atomic position evolution trajectories. This intuitive presentation not only aids students in better absorbing and comprehending complex scientific knowledge but also stimulates their interest in the discipline. Moreover, virtual simulation enhances the interactivity of teaching and increases student engagement, contributing to the enrichment of experimental content, the enhancement of experimental appeal, and the im-provement of teaching quality.
[1] | 朱晟, 彭怡婷, 闵宇霖, 刘海梅, 徐群杰. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
[2] | Simon, P. and Gogotsi, Y. (2020) Perspectives for Electrochemical Capacitors and Related Devices. Nature Materials, 19, 1151-1163. https://doi.org/10.1038/s41563-020-0747-z |
[3] | Lin, Z.F., Taberna, P.L. and Simon, P. (2018) Advanced Analytical Techniques to Characterize Materials for Electrochemical Capacitors. Current Opinion in Electrochemistry, 9, 18-25. https://doi.org/10.1016/j.coelec.2018.03.004 |
[4] | Bo, Z., Li, C., Yang, H., Ostrikov, K., Yan, J. and Cen, K. (2018) Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 10, 33. https://doi.org/10.1007/s40820-018-0188-2 |
[5] | 杨亮, 邓乔元, 战光辉, 林仕伟. 基于分子动力学的纳米压痕虚拟仿真教学设计[J]. 教育进展, 2021(11): 1752. |
[6] | Zeng, L., Wu, T., Ye, T., Mo, T., Qiao, R. and Feng, G. (2021) Modeling Galvanostatic Charge-Discharge of Nanoporous Supercapacitors. Nature Computational Science, 1, 725-731. https://doi.org/10.1038/s43588-021-00153-5 |
[7] | Xu, K., Shao, H., Lin, Z., Merlet, C., Feng, G., Zhu, J. and Simon, P. (2020) Computational Insights into Charge Storage Mechanisms of Superca-pacitors. Energy & Environmental Materials, 3, 235-246.
https://doi.org/10.1002/eem2.12124 |
[8] | Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S.; in’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C. and Plimpton, S.J. (2022) LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171 |
[9] | Stukowski, A. (2010) Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool. Modelling and Simulation in Materials Science and Engi-neering, 18, 015012.
https://doi.org/10.1088/0965-0393/18/1/015012 |
[10] | Li, H., Xu, K., Chen, P., Yuan, Y., Qiu, Y., Wang, L., Zhu, L., Wang, X., Cai, G., Zheng, L., Dai, C., Zhou, D., Zhang, N., Zhu, J., Xie, J., Liao, F., Peng, H., Peng, Y., Ju, J., Lin, Z. and Sun, J. (2022) Achieving Ultrahigh Electrochemical Performance by Surface Design and Nanoconfined Water Manipulation. National Science Review, 9, nwac079.
https://doi.org/10.1093/nsr/nwac079 |
[11] | Xu, K., Lin, Z., Merlet, C., Taberna, P.-L., Miao, L., Jiang, J. and Simon, P. (2018) Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 11, 1892-1899. https://doi.org/10.1002/cssc.201702068 |
[12] | Xu, K., Merlet, C., Lin, Z.F., Shao, H., Taberna, P.L., Miao, L., Jiang, J.J., Zhu, J.X. and Simon, P. (2020) Effects of Functional Groups and Anion Size on the Charging Mechanisms in Lay-ered Electrode Materials. Energy Storage Materials, 33, 460-469. https://doi.org/10.1016/j.ensm.2020.08.030 |
[13] | Xu, K., Ji, X., Zhang, B., Chen, C., Ruan, Y.J., Miao, L. and Jiang, J.J. (2016) Charging/Discharging Dynamics in Two-Dimensional Titanium Carbide (MXene) Slit Nanopore: In-sights from Molecular Dynamic Study. Electrochimica Acta, 196, 75-83. https://doi.org/10.1016/j.electacta.2016.02.165 |