In this paper, we propose a thermal model of a hybrid
photovoltaic/thermal concentration system. Starting from the thermal balance of
the model, the equation is solved and simulated with a MATLAB code, considering
air as the cooling fluid. This enabled us to evaluate some of the parameters
influencing the electrical and thermal performance of this device. The results
showed that the temperature, thermal efficiency and electrical efficiency
delivered depend on the air mass flow rate. The electrical and thermal
efficiencies for different values of air mass flow are encouraging, and
demonstrate the benefits of cooling photovoltaic cells. The results show that
thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the
value of the light concentration used. The thermal efficiency of the solar cell
increases as the light concentration increases, whatever the air flow rate
used. For a concentration equal to 30 sun, the
thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s; the
thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at
the same concentration. An interesting and useful finding was that the proposed
numerical model allows the determination of the electrical as well as thermal
efficiency of the hybrid CPV/T with air flow as cooling fluid.
References
[1]
Chow, T.T. (2010) A Review on Photovoltaic/Thermal Hybrid Solar Technology. Applied Energy, 87, 365-379. https://doi.org/10.1016/j.apenergy.2009.06.037
[2]
Greppi, M. and Fabbri, G. (2018) Use of Microspheres in Thermally Insulating Hybrid Solar Panels. Energy Procedia, 148, 948-953. https://doi.org/10.1016/j.egypro.2018.08.090
[3]
Shah, T.R. and Ali, H.M. (2019) Applications of Hybrid Nanofluids in Solar Energy, Practical Limitations and Challenges: A Critical Review. Solar Energy, 183, 173-203. https://doi.org/10.1016/j.solener.2019.03.012
[4]
Gaur, A., Ménézo, C. and Giroux-Julien, S. (2017) Numerical Studies on Thermal and Electrical Performance of a Fully Wetted Absorber PVT Collector with PCM as a Storage Medium. Renewable Energy, 109, 168-187. https://doi.org/10.1016/j.renene.2017.01.062
[5]
Cui, M., et al. (2007) Thermal Test and Analysis of Concentrator Solar Cells. Proceedings of Solid State Lighting and Solar Energy Technologies, Vol. 6841, Article 684117. https://doi.org/10.1117/12.755323 http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.755323
[6]
Cui, M., Chen, N.F., Yang, X.L., Wang, Y., Bai, Y.M. and Zhang, X.W. (2009) Thermal Analysis and Test for Single Concentrator Solar Cells. Journal of Semiconductors, 30, Article 044011. https://doi.org/10.1088/1674-4926/30/4/044011
[7]
Amal, H., Hicham, E.H., Thierry, L., Mohamad, R. and Mahmoud, K. (2020) Parabolic Trough Photovoltaic/Thermal Hybrid System: Thermal Modeling and Parametric Analysis. Renewable Energy, 165, 224-236.
[8]
Herez, A., El Hage, H., Lemenand, T., Ramadan, M. and Khaled, M. (2021) Parabolic trough Photovoltaic/Thermal Hybrid System: Thermal Modeling and Parametric Analysis. Renewable Energy, 165, 224-236. https://doi.org/10.1016/j.renene.2020.11.009
[9]
Jia, Y., Alva, G. and Fang, G. (2019) Development and Applications of Photovoltaic-Thermal Systems: A Review. Renewable and Sustainable Energy Reviews, 102, 249-265. https://doi.org/10.1016/j.rser.2018.12.030
[10]
Chou, T.L., Shih, Z.H., Hong, H.F., Han, C.N. and Chiang, K.N. (2007) Investigation of the Thermal Performance of High-Concentration Photovoltaic Solar Cell Package. 2007 International Conference on Electronic Materials and Packaging, Daejeon, 19-22 November 2007, 1-6. https://doi.org/10.1109/EMAP.2007.4510295
[11]
Ceylan, İ., Gürel, A.E., Ergün, A., Guma Ali, İ.H., Ağbulut, ü. and Yıldız, G. (2021) A Detailed Analysis of CPV/T Solar Air Heater System with Thermal Energy Storage: A Novel Winter Season Application. Journal of Building Engineering, 42, Article ID: 103097. https://doi.org/10.1016/j.jobe.2021.103097
[12]
Elnozahy, A., Rahman, A.K.A., Ali, A.H.H., Abdel-Salam, M. and Ookawara, S. (2015) Thermal/Electrical Modeling of a PV Module as Enhanced by Surface Cooling. Journal of Clean Energy Technologies, 4, 1-7. https://doi.org/10.7763/JOCET.2016.V4.245
[13]
Afzali Gorouh, H., et al. (2022) Thermal Modelling and Experimental Evaluation of a Novel Concentrating Photovoltaic Thermal Collector (CPVT) with Parabolic Concentrator. Renewable Energy, 181, 535-553. https://doi.org/10.1016/j.renene.2021.09.042
[14]
Meneses-Rodriguez, D., Horley, P.P., González-Hernández, J., Vorobiev, Y.V. and Gorley, P.N. (2005) Photovoltaic Solar Cells Performance at Elevated Temperatures. Solar Energy, 78, 243-250. https://doi.org/10.1016/j.solener.2004.05.016
[15]
Costa, V.A.F. and Dias, J.M.S. (2023) On the Best Coefficient of Performance and Specific Heating or Cooling Power Combination for Adsorption Refrigerators and Heat Pumps. International Journal of Refrigeration, 152, 43-49. https://doi.org/10.1016/j.ijrefrig.2023.04.009
[16]
Zhang, L., Jing, D., Zhao, L., Wei, J. and Guo, L. (2012) Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review. International Journal of Photoenergy, 2012, Article ID: 869753. https://doi.org/10.1155/2012/869753
[17]
Amori, K.E. and Taqi Al-Najjar, H.M. (2012) Analysis of Thermal and Electrical Performance of a Hybrid (PV/T) Air Based Solar Collector for Iraq. Applied Energy, 98, 384-395. https://doi.org/10.1016/j.apenergy.2012.03.061
[18]
Shanks, K., et al. (2018) A > 3000 Suns High Concentrator Photovoltaic Design Based on Multiple Fresnel Lens Primaries Focusing to One Central Solar Cell. Solar Energy, 169, 457-467. https://doi.org/10.1016/j.solener.2018.05.016
[19]
Amadou, K., Bruno, K., Gilbert, N.G., Eloi, B., Fati, A.O. and Sié, K. (2023) Assessment of the Thermal Efficiency of a Concentrated Photovoltaic/Thermal (CPV/T) Hybrid System with Water as Heat Transfer Fluid. Current Journal of Applied Science and Technology, 42, 34-44. https://doi.org/10.9734/cjast/2023/v42i434276
[20]
Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S. (2007) Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Hoboken.
[21]
Hegazy, A.A. (2000) Comparative Study of the Performances of Four Photovoltaic/Thermal Solar Air Collectors. Energy Conversion and Management, 41, 861-881. https://doi.org/10.1016/S0196-8904(99)00136-3
[22]
Touafek, K., Khelifa, A., Adouane, M., Khettaf, E.H. and Embarek, A. (2013) Experimental Study on a New Conception of Hybrid PV/T Collector. 14th International Conference on Sciences and Techniques of Automatic Control & Computer Engineering—STA’2013, Sousse, 20-22 December 2013, 140-145. https://doi.org/10.1109/STA.2013.6783120
[23]
Sopian, K., Liu, H.T., Kakac, S. and Veziroglu, T.N. (1996) Performance of a Hybrid Photovoltaic Thermal Solar Collector. ASME 1996 International Mechanical Engineering Congress and Exposition, Atlanta, 17-22 November Georgia, 341-346. https://doi.org/10.1115/IMECE1996-0293