|
用于超级电容器的杉树皮基衍生多孔碳材料
|
Abstract:
高制造成本一直阻碍着我国超级电容器进入市场化的进程。为了解决这一问题,将价格低廉的杉树皮作为碳电极材料前驱体,最终成功制备高性能的生物质衍生多孔碳材料。在6 M KOH电解液中进行测试(三电极),比容量可以达到312 F/g (0.5 A/g),在50 A/g的高电流密度下比电容仍保持43%;在两电极测试时,具有1.4 V大电势窗和6.4 Wh/Kg的能量密度,同时拥有接近7000 W/Kg的功率密度(10 A/g)。
High manufacturing costs have been hindering the process of supercapacitors entering the market in our country. In order to solve this problem, the cheap Chinese fir bark was used as the precursor of carbon electrode material, and the high performance biomass-derived porous carbon material was successfully prepared. When tested in A 6 M KOH electrolyte (three electrodes), the specific capacity can reach 312 F/g (0.5 A/g), and the specific capacitance remains 43% at a high current density of 50 A/g. In the two-electrode test, it has A large potential window of 1.4 V and an energy density of 6.4 Wh/Kg, while having a power density of nearly 7000 W/Kg (10 A/g).
[1] | Massimiliano, P., Damiano, L., Matteo, R., et al. (2017) Advantages of Using Supercapacitors and Silicon Carbide on Hybrid Vehicle Series Architecture. Energies, 10, Article No. 920.
https://doi.org/10.3390/en10070920 |
[2] | 张熊, 孙现众, 马衍伟. 高比能超级电容器的研究进展[J]. 中国科学: 化学, 2014, 44(7): |
[3] | Liu, Y., Li, J., Lai, Y., et al. (2007) Preparation and Properties of Pitch Carbon Based Supercapacitor. Journal of Central South University of Technology, 5, 601-606. https://doi.org/10.1007/s11771-007-0115-z |
[4] | Chen, X., Paul, R., Dai, L., (2017) Carbon-Based Superca-pacitors for Efficient Energy Storage. National Science Review, 4, 453-489. https://doi.org/10.1093/nsr/nwx009 |
[5] | Gopalakrishnan, A. and Badhulika, S. (2020) Effect of Self-Doped Heteroatoms on the Performance of Biomass-Derived Carbon for Supercapacitor Applications. Journal of Power Sources, 480, Article ID: 228830.
https://doi.org/10.1016/j.jpowsour.2020.228830 |
[6] | 孙正丰, 关景如, 陶舒婕, 等. 橘皮基多孔生物炭材料的制备及超级电容器性能研究[J]. 材料科学, 2022, 12(12): 7. |
[7] | Yadav, N., Singh, M.K., Yadav, N., et al. (2018) High Performance Quasi-Solid-State Supercapacitors with Peanut-Shell-Derived Porous Carbon. Journal of Power Sources, 402, 133-146.
https://doi.org/10.1016/j.jpowsour.2018.09.032 |
[8] | Xu, X., Gao, J., Tian, Q., et al. (2017) Walnut Shell De-rived Porous Carbon for a Symmetric All-Solid-State Supercapacitor. Applied Surface Science, 411, 170-176. https://doi.org/10.1016/j.apsusc.2017.03.124 |
[9] | Sivagurunathan, P., Kumar, G., Kobayashi, T., et al. (2017) Effects of Various Dilute Acid Pretreatments on the Biochemical Hydrogen Production Potential of Marine Macroalgal Biomass. International Journal of Hydrogen Energy, 42, 27600-27606. https://doi.org/10.1016/j.ijhydene.2017.05.106 |
[10] | Chen, W., Gong, M., Li, K., et al. (2020) Insight into KOH Activation Mechanism during Biomass Pyrolysis: Chemical Reactions between O-Containing Groups and KOH. Applied Energy, 278, Article ID: 115730.
https://doi.org/10.1016/j.apenergy.2020.115730 |
[11] | Zhou, S., Cai, Y., Cui, J., et al. (2021) An Understanding for Improved Biomass Pyrolysis: Toward a Systematic Comparison of Different Acid Pretreatments. Chemical En-gineering Journal, 1, Article ID: 128513.
https://doi.org/10.1016/j.cej.2021.128513 |