|
卷积神经网络在土壤理化性质测定中的研究进展
|
Abstract:
随着农业科技的进步和土壤管理的重要性日益凸显,对土壤理化性质的准确测定和预测变得越来越重要。传统的土壤分析方法通常需要耗费大量的时间和人力,并且受到人为因素的影响。近年来,卷积神经网络(Convolutional Neural Network, CNN)作为一种强大的机器学习方法,在图像处理和模式识别领域取得了巨大成功。本文旨在综述卷积神经网络在土壤理化性质测定中的研究进展,探讨其在土壤科学领域的应用前景。
With the progress of agricultural science and technology and the increasing importance of soil management, the accurate determination and prediction of soil physical and chemical properties become more and more important. Traditional soil analysis methods usually consume a lot of time and manpower, and are affected by human factors. In recent years, convolutional neural network (CNN), as a powerful machine learning method, has achieved great success in image processing and pattern recognition. This paper aims to review the research progress of convolutional neural network in the determination of soil physical and chemical properties, and discuss its application prospects in the field of soil science.
[1] | Müller, R., Peticzka, R. and Inselsbacher, E. (2023) Applicability of the Microdialysis Technique in Dry Soils: Impact of Soil Water Content Depends on Perfusion Flow Rate. Soil Biology and Biochemistry, 177, 108903.
https://doi.org/10.1016/j.soilbio.2022.108903 |
[2] | Asriyani, N., Mufti, N., Zulaikah, S. and Abadi, M.T.H. (2022) Fabrication Rapitest Luster Leaf Color Change-Based for Soil pH Measurement: Comparison Study. IOP Conference Series: Earth and Environmental Science, 985, 012026.
https://doi.org/10.1088/1755-1315/985/1/012026 |
[3] | 王美慧, 吕春华, 於丽华, 等. 土壤pH值对甜菜幼苗生理变化的影响[J]. 黑龙江大学工程学报(中英俄文), 2023, 14(2): 104-112. https://doi.org/10.13524/j.2097-2873.2023.02.029 |
[4] | 史杨, 王儒敬, 汪玉冰. 基于卷积神经网络和近红外光谱的土壤有机碳预测模型[J]. 计算机应用与软件, 2018, 35(10): 147-152+266. |
[5] | 唐永生, 陈争光. 基于卷积神经网络与可见近红外光谱的土壤含氮量检测[J]. 黑龙江八一农垦大学学报, 2021, 33(3): 93-99. |
[6] | Hong, Y.S., Chen, S.C., Hu, B.F., et al. (2023) Spectral Fusion Modeling for Soil Organic Carbon by a Parallel Input-Convolutional Neural Network. Geoderma, 437, 116584. https://doi.org/10.1016/j.geoderma.2023.116584 |
[7] | 程宇, 陈良富, 柳钦火, 等. 基于MODIS数据对不同植被覆盖下土壤水分监测的可行性研究[J]. 遥感学报, 2006(5): 783-788. |
[8] | 史腾飞, 尚家秀, 吴宗航. 基于卷积神经网络的图像分类改进方法研究[J]. 现代信息科技, 2023, 7(5): 109-112.
https://doi.org/10.19850/j.cnki.2096-4706.2023.05.026 |
[9] | 李朝英, 郑路. 土壤pH测定的影响因素探讨[J]. 上海农业学报, 2021, 37(1): 47-52.
https://doi.org/10.15955/j.issn1000-3924.2021.01.08 |
[10] | 杨希, 毛珂, 陈健, 等. 土壤pH值实验室测定过程中影响因素的探讨[J]. 贵州地质, 2019, 36(3): 286-290. |
[11] | 唐永生, 陈争光. 卷积神经网络和近红外光谱的土壤pH值预测[J]. 光谱学与光谱分析, 2021, 41(3): 892-897. |
[12] | 娄泽生, 杨晶, 吴亮, 等. 融合GNSS ZTD和气象要素的内蒙古土壤水含量模型[J]. 全球定位系统, 2022, 47(1): 49-58. |
[13] | 王璨, 武新慧, 李恋卿, 等. 卷积神经网络用于近红外光谱预测土壤含水率[J]. 光谱学与光谱分析, 2018, 38(1): 36-41. |
[14] | 谭建灿, 毛克彪, 左志远, 等. 基于卷积神经网络和AMSR2微波遥感的土壤水分反演研究[J]. 高技术通讯, 2018, 28(5): 399-408. |