|
Pharmacy Information 2024
小分子EGFR-TKIs在非小细胞肺癌治疗中的研究进展
|
Abstract:
小分子表皮生长因子受体酪氨酸激酶抑制剂(epithelial growth factor receptor tyrosine kinase in-hibitor, EGFR-TKI)在治疗伴有EGFR突变的非小细胞肺癌(non-small cell lung cancer, NSCLC)中获得了巨大的临床收益。但患者经过一段时间EGFR-TKIs治疗,不可避免的出现获得性耐药。本文主要对小分子EGFR-TKIs在NSCLC治疗中的研究进展及进行综述,为该类药物的临床使用及未来的研究方向提供参考。
Small molecule epithelial growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) has achieved great clinical benefits in the treatment of non-small cell lung cancer (NSCLC) with EGFR mutation. However, after a period of EGFR-TKIs treatment, patients will inevitably acquire drug resistance. Thereview summarizes the research progress of EGFR-TKIs in the treatment of NSCLC which will provide reference for the clinical application and the future of EGFR-TKIs discovery.
[1] | American Association for Cancer Research, Philadelphia, Pennsylvania (AACR) (2022) AACR Cancer Progress Report 2022. https://cancerprogressreport.aacr.org/progress/ |
[2] | Cohen, P., Cross, D. and Janne, P. (2021) Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions. Nature Reviews Drug Discovery, 20, 551-569. https://doi.org/10.1038/s41573-021-00195-4 |
[3] | Bishayee, S. (2000) Role of Conformational Alteration in the Epidermal Growth Factor Receptor (EGFR) Function. Biochemical Pharmacology, 60, 1217-1223. https://doi.org/10.1016/S0006-2952(00)00425-1 |
[4] | Heon, S., Yeap, B.Y., Lindeman, N.I., et al. (2012) The Im-pact of Initial Gefitinib or Erlotinib versus Chemotherapy on Central Nervous System Progression in Advanced Non-Small Cell Lung Cancer with EGFR Mutations. Clinical Cancer Research, 18, 4406-4414. https://doi.org/10.1158/1078-0432.CCR-12-0357 |
[5] | Mitsudomi, T. and Yatabe, Y. (2010) Epidermal Growth Factor Receptor in Relation to Tumor Development: EGFR Gene and Cancer. FEBS, 277, 301-308. https://doi.org/10.1111/j.1742-4658.2009.07448.x |
[6] | Krause, D.S. and Vanetten, R.A. (2005) Tyrosine Kinases as Targets for Cancer Therapy. The New England Journal of Medicine, 353, 172-187. https://doi.org/10.1056/NEJMra044389 |
[7] | Nguyen, K.S.H. and Neal, J.W. (2012) First-Line Treatment of EGFR-Mutant Non-Small-Cell Lung Cancer: The Role of Erlotinib and Other Tyrosine Kinase Inhibitors. Biology, 6, 337-345. https://doi.org/10.2147/BTT.S26558 |
[8] | Min, H.Y. and Lee, H.Y. (2022) Molecular Targeted Therapy for Anticancer Treatment. Experimental & Molecular Medicine, 54, 1670-1694. https://doi.org/10.1038/s12276-022-00864-3 |
[9] | Yang, Y., Li, S., Wang, Y., et al. (2022) Protein Tyrosine Kinase Inhibitor Resistance in Malignant Tumors: Molecular Mechanisms and Future Perspective. Signal Transduction Targeted Therapy, 7, Article No. 329.
https://doi.org/10.1038/s41392-022-01168-8 |
[10] | Rosell, R., Moran, T., Queralt, C., et al. (2009) Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer. The New England Journal of Medicine, 361, 958-967. https://doi.org/10.1056/NEJMoa0904554 |
[11] | Pao, W., Miller, V.A., Politi, K.A., et al. (2005) Acquired Re-sistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain. PLOS Medicine, 2, 225-235.
https://doi.org/10.1371/journal.pmed.0020073 |
[12] | Kobayashi, S., Boggon, T.J., Dayaram, T., et al. (2005) EGFR Mutation and Resistance of Non-Small-Cell Lung Cancer to Gefitinib. The New England Journal of Medicine, 352, 786-792. https://doi.org/10.1056/NEJMoa044238 |
[13] | Chen, L.F., et al. (2018) Recent Progress of Small-Molecule Epidermal Growth Factor Receptor (EGFR) Inhibitors against C797S Resistance in Non-Small-Cell Lung Cancer. Journal of Medicinal Chemistry, 61, 4290-4300.
https://doi.org/10.1021/acs.jmedchem.7b01310 |
[14] | Park, S., Bo, M.K., Jung, H.A., et al. (2020) EGFR C797S as a Resistance Mechanism of Lazertinib in Non-Small Cell Lung Cancer with EGFR T790M Mutation. Cancer Research and Treatment, 52, 1288-1290.
https://doi.org/10.4143/crt.2020.278 |
[15] | Ho, T.L.F., et al. (2023) Domain-Specific p53 Mutants Activate EGFR by Distinct Mechanisms Exposing Tissue-Independent Therapeutic Vulnerabilities. Nature Communication, 14, Article No. 1726.
https://doi.org/10.1038/s41467-023-37223-3 |
[16] | Vaughan, C.A., Singh, S., Subler, M.A., et al. (2021) The On-cogenicity of Tumor-Derived Mutant p53 Is Enhanced by the Recruitment of PLK3. Nature Communication, 12, Article No. 704. https://doi.org/10.1038/s41467-021-20928-8 |
[17] | Meinhardt, A.L., Munkhbaatar, E., H?ckendorf, U., et al. (2022) The BCL-2 Family Member BOK Promotes KRAS-Driven Lung Cancer Progression in a p53-Dependent Manner. Oncogene, 41, 1376-1382.
https://doi.org/10.1038/s41388-021-02161-1 |
[18] | Schneider, J.L., Shaverdashvili, K., Mino-Kenudson, M., et al. (2023) Lorlatinib and Capmatinib in a ROS1-Rearranged NSCLC with MET-Driven Resistance: Tumor Response and Evolution. Precision Oncology, 7, Article No. 116. https://doi.org/10.1038/s41698-023-00464-y |
[19] | Priest, K., Le, A., Gebregzabheir, A., et al. (2023) Evolution of Acquired Resistance in a ROS1+ KRAS G12C+ NSCLC through the MAPK Pathway. Precision Oncology, 7, Article No. 9.
https://doi.org/10.1038/s41698-023-00349-0 |
[20] | Kim, J., Chang, I.Y. and You, H.J. (2022) Interactions between EGFR and EphA2 Promote Tumorigenesis through the Action of Ephexin1. Cell Death & Disease, 13, Article No. 528. https://doi.org/10.1038/s41419-022-04984-6 |
[21] | Pasquale, E.B. (2023) Eph Receptors and Ephrins in Cancer Progression. Nature Review Cancer, 24, 5-27.
https://doi.org/10.1038/s41568-023-00634-x |
[22] | Peters, T.L., Patil, T., Le, A.T., et al. (2021) Evolution of MET and NRAS Gene Amplification as Acquired Resistance Mechanisms in EGFR Mutant NSCLC. Precision Oncology, 5, Article No. 91.
https://doi.org/10.1038/s41698-021-00231-x |
[23] | Han, S., Tian, Z., Tian, H., et al. (2023) HDGF Promotes Ge-fitinib Resistance by Activating the PI3K/AKT and MEK/ERK Signaling Pathways in Non-Small Cell Lung Cancer. Cell Death & Differentiation, 9, Article No. 181.
https://doi.org/10.1038/s41420-023-01476-0 |
[24] | Toyozawa, R., Iwamoto, Y., Yokoyama, T., et al. (2021) P76.61 Long Follow up Study of Comparing Erlotinib (ER) with Gefitinib (GE) for Previously Treated Advanced Non-Small Cell Lung Cancer: WJOG5108LFS. Journal of Thoracic Oncology, 16, 613-614. https://doi.org/10.1016/j.jtho.2021.01.1118 |
[25] | Wu, Y.L., Cheng, Y., Zhou, X., et al. (2017) Dacomitinib versus Gefitinib as First-Line Treatment for Patients with EGFR-Mutation-Positive Non-Small-Cell Lung Cancer (ARCHER 1050): A Randomized, Open-Label, Phase 3 Trial. The Lancet Oncology, 18, 1454-1466. https://doi.org/10.1016/S1470-2045(17)30608-3 |
[26] | Corral, J., Park, K., Yang, J.C., et al. (2017) Afatinib (A) vs Gefitinib (G) in Patients with EGFR Mutation-Positive (EGFRm+) NSCLC: Updated OS Data from the Phase IIb Trial LUX-Lung 7 (LL7). Annals of Oncology, 28, 34-34.
https://doi.org/10.1093/annonc/mdx091.013 |
[27] | Bian, D., Sun, L., Hu, J., et al. (2023) Neoadjuvant Afatinib for Stage III EGFR-Mutant Non-Small Cell Lung Cancer: A Phase II Study. Nature Communication, 14, Article No. 4655. https://doi.org/10.1038/s41467-023-40349-z |
[28] | 杨曼, 李国文, 邱文纯. 吉非替尼联合一线化疗方案治疗EGFR突变阳性的Ⅳ期非鳞非小细胞肺癌的临床疗效及安全性[J]. 临床合理用药杂志, 2022, 15(27): 95-97. |
[29] | 秦冉冉, 李海银, 黄卷舒. 厄洛替尼联合奈达铂, 培美曲塞治疗IIIB, IV期非小细胞肺癌的临床效果[J]. 临床合理用药杂志, 2021, 14(10): 68-69. |
[30] | Zhong, W.Z., Yan, H.H., Chen, K.N., et al. (2023) Erlotinib versus Gemcita-bine plus Cisplatin as Neoadjuvant Treatment of Stage IIIA-N2 EGFR-Mutant Non-Small-Cell Lung Cancer: Final Overall Survival Analysis of the EMERGING-CTONG 1103 Randomised Phase II Trial. Signal Transduction Targeted Therapy, 8, Article No. 76.
https://doi.org/10.1038/s41392-022-01286-3 |
[31] | Wittlinger, F. and Laufer, S.A. (2021) The Pre-Clinical Discov-ery and Development of Osimertinib Used to Treat Non-Small Cell Lung Cancer. Expert Opinion on Drug Discovery, 16, 1091-1103.
https://doi.org/10.1080/17460441.2021.1936496 |
[32] | Li, S., Zhang, T., Zhu, S.J., et al. (2022) Optimization of Brigatinib as New Wild-Type Sparing Inhibitors of EGFR (T790M/C797S) Mutants. ACS Medicinal Chemistry Letters, 13, 196-202.
https://doi.org/10.1021/acsmedchemlett.1c00555 |
[33] | Yan, X.E., Ayaz, P., Zhu, S.J., et al. (2020) Structural Basis of AZD9291 Selectivity for EGFR T790M. Journal of Medicinal Chemistry, 63, 8502-8511. https://doi.org/10.1021/acs.jmedchem.0c00891 |
[34] | David, E.H., Florian, W., Tyler, S.B., et al. (2022) Structural Basis for Inhibition of Mutant EGFR with Lazertinib (YH25448). ACS Medicinal Chemistry Letters, 13, 1856-1863. https://doi.org/10.1021/acsmedchemlett.2c00213 |
[35] | Jeancharles, S., Johan, V., Yuichiro, O., et al. (2018) Osi-mertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 378, 113-125.
https://doi.org/10.1056/NEJMe1714580 |
[36] | Mok, T.S., Wu, Y.L., Ahn, M.J., et al. (2017) Osimertinib or Plati-num-Pemetrexed in EGFR T790M-Positive Lung Cancer. The New England Journal of Medicine, 376, 629-640. https://doi.org/10.1056/NEJMoa1612674 |
[37] | Cho, B.C., Han, J., Kim, S., et al. (2018) MA26.09 Lazertinib, a Third Generation EGFR-TKI, in Patients with EGFR-TKI-Resistant NSCLC: Updated Results of a Phase I/II Study. Journal of Thoracic Oncology, 13, 453-453.
https://doi.org/10.1016/j.jtho.2018.08.544 |
[38] | Ahn, M.J., et al. (2019) Lazertinib in Patients with EGFR Muta-tion-Positive Advanced Non-Small-Cell Lung Cancer: Results from the Dose Escalation and Dose Expansion Parts of a First-in-Human, Open-Label, Multicentre, Phase 1-2 Study. The Lancet Oncology, 20, 1681-1690. https://doi.org/10.1016/S1470-2045(19)30504-2 |
[39] | Yang, C.H., Camidge, D.R., Yang, C.T., et al. (2020) Safety, Efficacy and Pharmacokinetics of Almonertinib (HS-10296) in Pretreated Patients with EGFR-mutated Advanced NSCLC: A Multicenter, Open-Label, Phase I Trial. Journal of Thoracic Oncology, 15, 1907-1918. https://doi.org/10.1016/j.jtho.2020.09.001 |
[40] | Lu, A.S., et al. (2022) Efficacy of Aumolertinib (HS-10296) in Pa-tients with Advanced EGFR T790M+ NSCLC: Updated Post-National Medical Products Administration Approval Re-sults from the APOLLO Registrational Trial. Journal of Thoracic Oncology, 17, 411-422. https://doi.org/10.1016/j.jtho.2021.10.024 |
[41] | Lu, S., Dong, X., Jian, H., et al. (2022) AENEAS: A Randomized Phase III Trial of Aumolertinib versus Gefitinib as First-Line Therapy for Locally Advanced or Metastatic Non-Small-Cell Lung Cancer with EGFR Exon 19 Deletion or L858R Mutations. Journal of Thoracic Oncology, 40, 3162-3171. |
[42] | Shi, Y., Chen, G., Wang, X., et al. (2022) Furmonertinib (AST2818) versus Gefitinib as First-Line Therapy for Chinese Patients with Locally Advanced or Metastatic EGFR Mutation-Positive Non-Small-Cell Lung Can-cer (FURLONG): A Multicentre, Double-Blind, Randomised Phase 3 Study. The Lancet Respiratory Medicine, 10, 1019-1028. https://doi.org/10.1016/S2213-2600(22)00168-0 |
[43] | Lin, S.Y., Hsu, Y.C., Peng, Y.H., et al. (2019) Discovery of a Furanopyrimidine-Based Epidermal Growth Factor Receptor Inhibitor (DBPR112) as a Clinical Candidate for the Treatment of Non-Small Cell Lung Cancer. Journal of Medicinal Chemistry, 62, 10108-10123. https://doi.org/10.1021/acs.jmedchem.9b00722 |
[44] | Kelly, R.J., Shepherd, F.A., Krivoshik, A., et al. (2019) A Phase 3, Randomized, Open-Label Study of ASP8273 versus Erlotinib or Gefitinib in Patients with Advanced Stage IIIB/IV Non-Small Cell Lung Cancer. Annals of Oncology, 30, 1127-1133. https://doi.org/10.1093/annonc/mdz128 |
[45] | Lola, A. and Chao, L. (2016) NDA 208542-Rociletinib FDA Presen-tation, Food and Drug Administration.
https://www.fda.gov/media/97250/download |
[46] | Enom, S., Brubaker, D., Campbell, E., et al. (2022) Discovery of BLU-945, a Reversible, Potent, and Wild-Type-Sparing Next-Generation EGFR Mutant Inhibitor for Treatment-Resistant Non-Small-Cell Lung Cancer. Journal of Medicinal Chemistry, 65, 9662-9677. https://doi.org/10.1021/acs.jmedchem.2c00704 |
[47] | Liu, X., Zhang, X., Yang, L., et al. (2019) Abstract 1320: Pre-clinical Evaluation of TQB3804, a Potent EGFR C797S Inhibitor. Proceedings: AACR Annual Meeting 2019, Atlanta, 29 March-3 April 2019, 1320-1320.
https://doi.org/10.1158/1538-7445.AM2019-1320 |
[48] | To, C., Jang, J., Chen, T., et al. (2019) Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discovery, 9, 926-943. https://doi.org/10.1158/2159-8290.CD-18-0903 |
[49] | Jia, Y., Yun, C.H., Park, E., et al. (2016) Overcoming EGFR(T790M) and EGFR(C797S) Resistance with Mutant-Selective Allosteric Inhibitors. Nature, 534, 129-132. https://doi.org/10.1038/nature17960 |
[50] | To, C., Beyett, T.S., Jang, J., et al. (2022) An Allosteric Inhibitor against the Therapy Resistant Mutant Forms of EGFR in Non-Small Cell Lung Cancer. Nature Cancer, 3, 402-417. https://doi.org/10.1038/s43018-022-00351-8 |
[51] | Ulrike, O.S., Antonio, R., Bernd, K., et al. (2022) Discovery of Novel Allosteric EGFR L858R Inhibitors for the Treatment of Non-Small-Cell Lung Cancer as a Single Agent or in Combination with Osimertinib. Journal of Medicinal Chemistry, 65, 13052-13073. https://doi.org/10.1021/acs.jmedchem.2c00893 |
[52] | Schalm, S.S., Dineen, T., Lim, S.M., et al. (2020) 1296P BLU-945, a Highly Potent and Selective 4th Generation EGFR TKI for the Treatment of EGFR T790M/C797S Resistant NSCLC. Annals of Oncology, 31, 839-839.
https://doi.org/10.1016/j.annonc.2020.08.1610 |
[53] | Kashima, K., Kawauchi, H., Tanimura, H., et al. (2020) CH7233163 Overcomes Osimertinib Resistant EGFR-Del19/T790M/C797S Mutation. Molecular Cancer Therapeutics, 19, 2288-2297.
https://doi.org/10.1158/1535-7163.MCT-20-0229 |
[54] | Lim, S.M., Kim, D.W., Jung, J.E., et al. (2021) 1365TiP A Phase I/II, Open-Label Study of BBT-176, a Triple Mutation Targeting EGFR TKI, in Patients with NSCLC Who Pro-gressed after Prior EGFR TKI Therapy. Annals of Oncology, 32, 1035-1035. https://doi.org/10.1016/j.annonc.2021.08.1966 |