全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于拓扑优化技术的板式微通道反应器换热流体板散热性能优化
Optimization of Heat Dissipation Performance of Plate Microchannel Reactor Heat Exchanger Fluid Plate Based on Topology Optimization Technique

DOI: 10.12677/HJCET.2024.141002, PP. 10-19

Keywords: 微通道反应器,换热流体板,拓扑优化
Microchannel Reactor
, Heat Exchanger Fluid Plate, Topology Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对板式微通道反应器换热流体板散热问题提出了一种基于拓扑优化技术的设计方案,将拓扑优化方法应用在微通道反应器换热流体板散热的流道设计中。将拓扑优化方法所得到流道同传统多平行流道进行对比,拓扑优化方法所得到流道的进出口压力降、最高温度、温度均方根均强于传统多平行流道,为板式微通道反应器换热流体板的优化设计提供了一种新的思路。
This article presents a design scheme using topology optimization technology to address the heat dissipation issue of the fluid plate in the plate microchannel reactor’s heat exchanger. The topology optimization method is used in designing the flow channel for the heat dissipation of the heat exchanger fluid plate of the microchannel reactor. By comparing the flow channel obtained through topology optimization with the traditional multi-parallel flow channel, it was discovered that the import and export pressures drop, maximum temperature, and root mean square of temperature of the flow channel obtained through the topology optimization method are more effective than those of the traditional multi-parallel flow channel. This offers a novel approach toward the optimization of heat exchanger plate design for plate-type microchannel reactors.

References

[1]  Watts, P. and Wiles, C. (2007) Recent Advances in Synthetic Micro Reaction Technology. Chemical Communica-tions, 2007, 443-467.
https://doi.org/10.1039/B609428G
[2]  Gutmann, B., Cantillo, D. and Kappe, C.O. (2015) Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angewandte Chemie International Edition, 54, 6688-6728.
https://doi.org/10.1002/anie.201409318
[3]  Li, L., Yao, C., Jiao, F., Han, M. and Chen, G. (2017) Experi-mental and Kinetic Study of the Nitration of 2-Ethylhexanol in Capillary Microreactors. Chemical Engineering and Processing: Process Intensification, 117, 179-185.
https://doi.org/10.1016/j.cep.2017.04.005
[4]  Wang, F.J., Ding, Y.C. and Xu, J.H. (2019) Continuous-Flow Synthesis of Pigment Red 146 in a Microreactor System. Industrial & Engineering Chemistry Research, 58, 16338-16347.
https://doi.org/10.1021/acs.iecr.9b03045
[5]  Fanelli, F., Parisi, G., Degennaro, L. and Luisi, R. (2017) Contribution of Microreactor Technology and Flow Chemistry to the Development of Green and Sustainable Synthesis. Beilstein Journal of Organic Chemistry, 13, 520-542.
https://doi.org/10.3762/bjoc.13.51
[6]  Sang, F., Huang, J. and Xu, J. (2020) A Circular Microreaction Method to the Safe and Efficient Synthesis of 3-Methylpyridine-N-Oxide. Chinese Journal of Chemical Engineering, 28, 1320-1325.
https://doi.org/10.1016/j.cjche.2020.02.002
[7]  Haugwitz, S. and Hagander, P. (2006) Challenges in Start-Up Control of a Heat Exchange Reactor with Exothermic Reactions; A Hybrid Approach. IFAC Proceedings Volumes, 39, 185-190.
https://doi.org/10.3182/20060607-3-IT-3902.00035
[8]  Jiang, S., Yang, Z., Zhang, J., Duan, X., Qian, G. and Zhou, X. (2022) Development of a Mini-Channel Heat Exchanger Reactor with Arborescent Structures for Fast Exothermic Reactions. Industrial & Engineering Chemistry Research, 61, 14121-14131.
https://doi.org/10.1021/acs.iecr.2c02601
[9]  Msaed, M.H.M. (2021) Control of Temperature Uniformity for Exothermic Liquid Reaction in Structured Passages. Master’s Thesis, University of Sheffield, Sheffield.
[10]  Taha, M.M., Said, I.A., Zeitoun, Z., Usman, S. and Al-Dahhan, M.H. (2023) Effect of Non-Uniform Heating on Tem-perature and Velocity Profiles of Buoyancy Driven Flow in Vertical Channel of Prismatic Modular Reactor Core. Applied Thermal Engineering, 225, Article ID: 120209.
https://doi.org/10.1016/j.applthermaleng.2023.120209
[11]  Milacic, E., Manzano, M.N., Madanikashani, S., Heynderickx, G., van Geem, K., van de Greef, A., Richter, A., Kriebitzsch, S., Buist, K. and Baltussen, M. (2022) Experimental Study on the Temperature Distribution in Fluidised Beds. Chemical Engineering Science, 248, Article ID: 117062.
https://doi.org/10.1016/j.ces.2021.117062
[12]  Xu, W., Chen, D. and Qian, H. (2020) Non-Uniform Temperature Fields and Effects of Steel Structures: Review and Outlook. Applied Sciences, 10, Article 5255.
https://doi.org/10.3390/app10155255
[13]  Qian, S., Wang, W., Ge, C., Lou, S., Miao, E. and Tang, B. (2018) Topology Optimization of Fluid Flow Channel in Cold Plate for Active Phased Array Antenna. Structural and Multidisciplinary Optimization, 57, 2223-2232.
https://doi.org/10.1007/s00158-017-1852-8
[14]  Bends?e, M.P. and Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering, 71, 197-224.
https://doi.org/10.1016/0045-7825(88)90086-2
[15]  Borrvall, T. and Petersson, J. (2003) Topology Optimi-zation of Fluids in Stokes Flow. International Journal for Numerical Methods in Fluids, 41, 77-107.
https://doi.org/10.1002/fld.426
[16]  Okkels, F., Olesen, L.H. and Bruus, H. (2005) Applications of Topology Optimization in the Design of Micro- and Nanofluidic Systems. NSTI-Nanotech 2005, 1, 575-578.
[17]  Dede, E.M. (2009) Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems. Proceedings of the COMSOL Users Conference, 2009, 715.
[18]  Koga, A.A., Lopes, E.C.C., Nova, H.F.V., De Lima, C.R. and Silva, E.C.N. (2013) Development of Heat Sink Device by Using Topology Optimization. International Journal of Heat and Mass Transfer, 64, 759-772.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.007
[19]  Kondoh, T., Matsumori, T. and Kawamoto, A. (2012) Drag Minimization and Lift Maximization in Laminar Flows via Topology Optimization Employing Simple Objective Function Expressions Based on Body Force Integration. Structural and Multidisciplinary Optimization, 45, 693-701.
https://doi.org/10.1007/s00158-011-0730-z
[20]  Kawamoto, A., Matsumori, T., Yamasaki, S., Nomura, T., Kondoh, T. and Nishiwaki, S. (2011) Heaviside Projection Based Topology Optimization by a PDE-Filtered Scalar Function. Structural and Multidisciplinary Optimization, 44, 19-24.
https://doi.org/10.1007/s00158-010-0562-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133