Artificial intelligence (AI)
holds a potentially transformational change in the healthcare industry.
Opportunities such as improved diagnostic accuracy, personalized
treatment, and reduced administrative burden have been broadly discussed in the
previous studies. In terms of actual implementation, there is limited research that explains the healthcare decision-makers’
cautious-pace approach to scaling AI technology in healthcare organizations.
The aim of this study is to review the existing literature to explore the key
challenges that justify the slow adoption
rate of artificial intelligence in the healthcare sector. The research also aims at providing a thorough understanding
of challenges that prevent healthcare organizations from harnessing the
benefits of AI. To achieve these goals, a literature review of 324 papers has
been conducted to identify the internal and external key challenges and their
impacts on the adoption of artificial intelligence in the healthcare sector.
The results indicate that expanding the
utilization of artificial intelligence technologies in healthcare has encountered several challenges emerging from technological capabilities, regulations and policies, data management, and the ethical landscape surrounding the use of AI. The
findings of this study contribute to the body of knowledge by exploring
the artificial intelligence adoption challenges.
References
[1]
Ahmad, O. F., Stoyanov, D., & Lovat, L. B. (2020). Barriers and Pitfalls for Artificial Intelligence in Gastroenterology: Ethical and Regulatory Issues. Techniques and Innovations in Gastrointestinal Endoscopy, 22, 80-84. https://doi.org/10.1016/j.tgie.2019.150636
[2]
Alami, H., Lehoux, P., Auclair, Y., de Guise, M., Gagnon, M.-P., Shaw, J. et al. (2020). Artificial Intelligence and Health Technology Assessment: Anticipating a New Level of Complexity. Journal of Medical Internet Research, 22, e17707. https://doi.org/10.2196/17707
[3]
Ali, F., Hamid, U., Zaidat, O., Bhatti, D., & Kalia, J. S. (2020). Role of Artificial Intelligence in TeleStroke: An Overview. Frontiers in Neurology, 11, Article 559322. https://doi.org/10.3389/fneur.2020.559322
[4]
Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A Systematic Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities. Journal of Innovation & Knowledge, 8, Article 100333. https://doi.org/10.1016/j.jik.2023.100333
[5]
Alnasser, B. (2023). The Economic Impact of Artificial Intelligence on Healthcare: A Literature Review. E-Health Telecommunication Systems and Networks, 12, 35-48. https://doi.org/10.4236/etsn.2023.123003
[6]
Alsheibani, S. A., Cheung, Y. P., & Messom, C. H. (2019). Factors Inhibiting the Adoption of Artificial Intelligence at Organizational-Level: A Preliminary Investigation. In M. Santana, & R. Montealegre (Eds.), AMCIS 2019 Proceedings. Association for Information Systems. https://aisel.aisnet.org/amcis2019/adoption_diffusion_IT/adoption_diffusion_IT/2/
[7]
Amjad, A., Kordel, P., & Fernandes, G. (2023). A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence. Sustainability, 15, Article 6655. https://doi.org/10.3390/su15086655
[8]
Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: Understanding Robo-Advisors Adoption among Customers. Industrial Management & Data Systems, 119, 1411-1430. https://doi.org/10.1108/IMDS-08-2018-0368
[9]
Boada, J. P., Maestre, B. R., & Genís, C. T. (2021). The Ethical Issues of Social Assistive Robotics: A Critical Literature Review. Technology in Society, 67, Article 101726. https://doi.org/10.1016/j.techsoc.2021.101726
[10]
Boch, A., Ryan, S., Kriebitz, A., Amugongo, L. M., & Lütge, C. (2023). Beyond the Metal Flesh: Understanding the Intersection between Bio- and AI Ethics for Robotics in Healthcare. Robotics, 12, Article 110. https://doi.org/10.3390/robotics12040110
[11]
Brecker, K., Lins, S., & Sunyaev, A. (2023). Why It Remains Challenging to Assess Artificial Intelligence. In Proceedings of the 56th Hawaii International Conference on System Sciences (pp. 5242-5251).
[12]
Bublitz, F. M., Oetomo, A., Sahu, K. S., Kuang, A., Fadrique, L. X., Velmovitsky, P. E. et al. (2019). Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things. International Journal of Environmental Research and Public Health, 16, Article 3847. https://doi.org/10.3390/ijerph16203847
[13]
Buchelt, B., Fraczkiewicz-Wronka, A., & Dobrowolska, M. (2020). The Organizational Aspect of Human Resource Management as a Determinant of the Potential of Polish Hospitals to Manage Medical Professionals in Healthcare 4.0. Sustainability, 12, Article 5118. https://doi.org/10.3390/su12125118
[14]
Calegari, L. P., & Fettermann, D. C. (2022). Analysis of Barriers and Benefits Associated with E-Health Technology Applications. Journal of Technology Management & Innovation, 17, 106-116. https://doi.org/10.4067/S0718-27242022000400106
[15]
Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing Machine Learning in Health Care—Addressing Ethical Challenges. The New England Journal of Medicine, 378, 981-983. https://doi.org/10.1056/NEJMp1714229
[16]
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
[17]
Cohen, I. G., Evgeniou, T., Gerke, S., & Minssen, T. (2020). The European Artificial Intelligence Strategy: Implications and Challenges for Digital Health. Lancet Digit Health, 2, e376-e379. https://doi.org/10.1016/S2589-7500(20)30112-6
[18]
Davenport, T., & Kalakota, R. (2019). The Potential for Artificial Intelligence in Healthcare. Future Healthcare Journal, 6, 94-98. https://doi.org/10.7861/futurehosp.6-2-94
[19]
Dlamini, Z., Francies, F. Z., Hull, R., & Marima, R. (2020). Artificial Intelligence (AI) and Big Data in Cancer and Precision Oncology. Computational and Structural Biotechnology Journal, 18, 2300-2311. https://doi.org/10.1016/j.csbj.2020.08.019
[20]
El-Sherif, D. M., Abouzid, M., Elzarif, M. T., Ahmed, A. A., Albakri, A., & Alshehri, M. M. (2022). Telehealth and Artificial Intelligence Insights into Healthcare during the COVID-19 Pandemic. Healthcare, 10, Article 385. https://doi.org/10.3390/healthcare10020385
[21]
Fan, W., Liu, J., Zhu, S., & Pardalos, P. M. (2020). Investigating the Impacting Factors for the Healthcare Professionals to Adopt Artificial Intelligence-Based Medical Diagnosis Support System (AIMDSS). Annals of Operations Research, 294, 567-592. https://doi.org/10.1007/s10479-018-2818-y
[22]
Fernandez, K., Young, A. T., Bhattarcharya, A., Kusari, A., & Wei, M. L. (2023). Artificial Intelligence and Teledermatology. In J. C. English III (Ed.), Teledermatology: A Comprehensive Overview (pp. 173-182). Springer. https://doi.org/10.1007/978-3-031-27276-9_18
[23]
Firouzi, F., Farahani, B., Barzegari, M., & Daneshmand, M. (2022). AI-Driven Data Monetization: The Other Face of Data in IoT-Based Smart and Connected Health. IEEE Internet of Things Journal, 9, 5581-5599. https://doi.org/10.1109/JIOT.2020.3027971
[24]
Fisch, C., & Block, J. (2018). Six Tips for Your (Systematic) Literature Review in Business and Management Research. Management Review Quarterly, 68, 103-106. https://doi.org/10.1007/s11301-018-0142-x
[25]
Fouad, H., Hassanein, A. S., Soliman, A. M., & Al-Feel, H. (2020). Analyzing Patient Health Information Based on IoT Sensor with AI for Improving Patient Assistance in the Future Direction. Measurement, 159, Article 107757. https://doi.org/10.1016/j.measurement.2020.107757
[26]
Gille, F., Jobin, A., & Ienca, M. (2020). What We Talk about When We Talk about Trust: Theory of Trust for AI in Healthcare. Intelligence-Based Medicine, 1-2, Article 100001. https://doi.org/10.1016/j.ibmed.2020.100001
[27]
Graham, S. A., Lee, E. E., Jeste, D. V., Van Patten, R., Twamley, E. W., Nebeker, C. et al. (2020). Artificial Intelligence Approaches to Predicting and Detecting Cognitive Decline in Older Adults: A Conceptual Review. Psychiatry Research, 284, Article 112732. https://doi.org/10.1016/j.psychres.2019.112732
[28]
Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H.-C., & Jeste, D. V. (2019). Artificial Intelligence for Mental Health and Mental Illnesses: An Overview. Current Psychiatry Reports, 21, Article No. 116. https://doi.org/10.1007/s11920-019-1094-0
[29]
Hoffmann-Riem, W. (2020). Artificial Intelligence as a Challenge for Law and Regulation. In T. Wischmeyer, & T. Rademacher (Eds.), Regulating Artificial Intelligence (pp. 1-29). Springer. https://doi.org/10.1007/978-3-030-32361-5_1
[30]
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. (2018). Artificial Intelligence in Radiology. Nature Reviews Cancer, 18, 500-510. https://doi.org/10.1038/s41568-018-0016-5
[31]
Kaur, S., Singla, J., Nkenyereye, L., Jha, S., Prashar, D., Joshi, G. P. et al. (2020). Medical Diagnostic Systems Using Artificial Intelligence (AI) Algorithms: Principles and Perspectives. IEEE Access, 8, 228049-228069. https://doi.org/10.1109/ACCESS.2020.3042273
[32]
Kellogg, K. C., Sendak, M., & Balu, S. (2022). AI on the Front Lines. MIT Sloan Management Review, 63, 44-50.
[33]
Khanijahani, A., Iezadi, S., Dudley, S., Goettler, M., Kroetsch, P., & Wise, J. (2022). Organizational, Professional, and Patient Characteristics Associated with Artificial Intelligence Adoption in Healthcare: A Systematic Review. Health Policy and Technology, 11, Article 100602. https://doi.org/10.1016/j.hlpt.2022.100602
[34]
Klang, E., Cohen-Shelly, M., & Lopez-Jimenez, F. (2023). Leveraging Large Language Models to Enhance Digital Health in Cardiology: A Preview of a Cutting-Edge Language Generation Model. Mayo Clinic Proceedings: Digital Health, 1, 105-108. https://doi.org/10.1016/j.mcpdig.2023.03.003
[35]
Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial Intelligence in Tourism and Hospitality: Bibliometric Analysis and Research Agenda. International Journal of Hospitality Management, 107, Article 103317. https://doi.org/10.1016/j.ijhm.2022.103317
[36]
Kumar, P., Dwivedi, Y. K., & Anand, A. (2021). Responsible Artificial Intelligence (AI) for Value Formation and Market Performance in Healthcare: the Mediating Role of Patient’s Cognitive Engagement. Information Systems Frontiers, 25, 2197-2220. https://doi.org/10.1007/s10796-021-10136-6
[37]
Lee, E. E., Torous, J., De Choudhury, M., Depp, C. A., Graham, S. A., Kim, H.-C. et al. (2021). Artificial Intelligence for Mental Healthcare: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 856-864. https://doi.org/10.1016/j.bpsc.2021.02.001
[38]
Lekadir, K., Feragen, A., Fofanah, A. J., Frangi, A. F., Buyx, A., Emelie, A. et al. (2023). FUTURE-AI: International Consensus Guideline for Trustworthy and Deployable Artificial Intelligence in Healthcare. arXiv preprint arXiv:2309.12325
[39]
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27, 12-12.
[40]
Mehta, N., Pandit, A., & Shukla, S. (2019). Transforming Healthcare with Big Data Analytics and Artificial Intelligence: A Systematic Mapping Study. Journal of Biomedical Informatics, 100, Article 103311. https://doi.org/10.1016/j.jbi.2019.103311
[41]
Morris, M. X., Song, E. Y., Rajesh, A., Asaad, M., & Phillips, B. T. (2023). Ethical, Legal, and Financial Considerations of Artificial Intelligence in Surgery. The American Surgeon, 89, 55-60. https://doi.org/10.1177/00031348221117042
[42]
Nguyen Van, P. (2022). The Critical Factors Impacting Artificial Intelligence Applications Adoption in Vietnam: A Structural Equation Modeling Analysis. Economies, 10, Article 129. https://doi.org/10.3390/economies10060129
[43]
Owoyemi, A., Owoyemi, J., Osiyemi, A., & Boyd, A. (2020). Artificial Intelligence for Healthcare in Africa. Frontiers in Digital Health, 2, Article 6. https://doi.org/10.3389/fdgth.2020.00006
[44]
Pacis, D. M. M., Subido, E. D., & Bugtai, N. T. (2018). Trends in Telemedicine Utilizing Artificial Intelligence. The AIP Conference Proceedings, 1993, Article 040009. https://doi.org/10.1063/1.5023979
[45]
Parveen, S., Chadha, R. S., Noida, C., Kumar, I. P., & Singh, J. (2022). Artificial Intelligence in Transportation Industry. International Journal of Innovative Science and Research Technology, 7, 1274-1283.
[46]
Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial Intelligence in Drug Discovery and Development. Drug Discovery Today, 26, 80-93. https://doi.org/10.1016/j.drudis.2020.10.010
[47]
Pesapane, F., Volonté, C., Codari, M., & Sardanelli, F. (2018). Artificial Intelligence as a Medical Device in Radiology: Ethical and Regulatory Issues in Europe and the United States. Insights into Imaging, 9, 745-753. https://doi.org/10.1007/s13244-018-0645-y
[48]
Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J. E. et al. (2022). Challenges to Implementing Artificial Intelligence in Healthcare: A Qualitative Interview Study with Healthcare Leaders in Sweden. BMC Health Services Research, 22, Article No. 850. https://doi.org/10.1186/s12913-022-08215-8
[49]
Pirtle, C. J., Payne, K., & Drolet, B. C. (2019). Telehealth: Legal and Ethical Considerations for Success. Telehealth and Medicine Today, 4. https://doi.org/10.30953/tmt.v4.144
[50]
Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare Uses of Artificial Intelligence: Challenges and Opportunities for Growth. The Healthcare Management Forum, 32, 272-275. https://doi.org/10.1177/0840470419843831
[51]
Raha, D., & Seetharaman, A. (2022). Framework for Understanding the Impact of Machine Learning and Artificial Intelligence in Healthcare Industry. In D. C. Wyld et al. (Eds.), Artificial Intelligence, Soft Computing and Applications (pp. 195-207). https://doi.org/10.5121/csit.2022.122315
[52]
Ramessur, R., Raja, L., Kilduff, C. L., Kang, S., Li, J.-P. O., Thomas, P. B., & Sim, D. A. (2021). Impact and Challenges of Integrating Artificial Intelligence and Telemedicine into Clinical Ophthalmology. The Asia-Pacific Journal of Ophthalmology, 10, 317-327. https://doi.org/10.1097/APO.0000000000000406
[53]
Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A Governance Model for the Application of AI in Health Care. Journal of the American Medical Informatics Association, 27, 491-497. https://doi.org/10.1093/jamia/ocz192
[54]
Renukappa, S., Mudiyi, P., Suresh, S., Abdalla, W., & Subbarao, C. (2022). Evaluation of Challenges for Adoption of Smart Healthcare Strategies. Smart Health, 26, Article 100330. https://doi.org/10.1016/j.smhl.2022.100330
[55]
Schwendicke, F. A., Samek, W., & Krois, J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99, 769-774. https://doi.org/10.1177/0022034520915714
[56]
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The Role of Artificial Intelligence in Healthcare: A Structured Literature Review. BMC Medical Informatics and Decision Making, 21, Article No. 125. https://doi.org/10.1186/s12911-021-01488-9
[57]
Sezgin, E. (2023). Artificial Intelligence in Healthcare: Complementing, Not Replacing, Doctors and Healthcare Providers. Digital Health, 9. https://doi.org/10.1177/20552076231186520
[58]
Shahsavar, Y., & Choudhury, A. (2023). User Intentions to Use ChatGPT for Self-Diag- nosis and Health-Related Purposes: Cross-Sectional Survey Study. JMIR Human Factors, 10, e47564. https://doi.org/10.2196/47564
[59]
Singh, R. P., Hom, G. L., Abramoff, M. D., Campbell, J. P., & Chiang, M. F. (2020). Current Challenges and Barriers to Real-World Artificial Intelligence Adoption for the Healthcare System, Provider, and the Patient. Translational Vision Science & Technology, 9, 45. https://doi.org/10.1167/tvst.9.2.45
[60]
Solaimani, S., & Swaak, L. (2023). Critical Success Factors in a Multi-Stage Adoption of Artificial Intelligence: A Necessary Condition Analysis. Journal of Engineering and Technology Management, 69, Article 101760. https://doi.org/10.1016/j.jengtecman.2023.101760
[61]
Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G. et al. (2022). Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence. arXiv preprint arXiv:2211.06318
[62]
Sun, T. Q., & Medaglia, R. (2019). Mapping the Challenges of Artificial Intelligence in the Public Sector: Evidence from Public Healthcare. Government Information Quarterly, 36, 368-383. https://doi.org/10.1016/j.giq.2018.09.008
[63]
Sunarti, S., Fadzlul Rahman, F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial Intelligence in Healthcare: Opportunities and Risk for Future. Gaceta Sanitaria, 35, S67-S70. https://doi.org/10.1016/j.gaceta.2020.12.019
[64]
Surovková, J., Haluzová, S., Strunga, M., Urban, R., Lifková, M., & Thurzo, A. (2023). The New Role of the Dental Assistant and Nurse in the Age of Advanced Artificial Intelligence in Telehealth Orthodontic Care with Dental Monitoring: Preliminary Report. Applied Sciences, 13, Article 5212. https://doi.org/10.3390/app13085212
[65]
Temsah, M.-H., Altamimi, I., Jamal, A., Alhasan, K., & Al-Eyadhy, A. (2023). ChatGPT Surpasses 1000 Publications on PubMed: Envisioning the Road Ahead. Cureus, 15, e44769. https://doi.org/10.7759/cureus.44769
[66]
Tenney, D., & Sheikh, N. J. (2019). Development of a Strategic Roadmap Framework for Nonprofit Organizations: Literature Review. In The 2019 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 1-11). IEEE. https://doi.org/10.23919/PICMET.2019.8893887
[67]
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) Applications for COVID-19 Pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14, 337-339. https://doi.org/10.1016/j.dsx.2020.04.012
[68]
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. et al. (2017). Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Curran Associates Inc., pp. 6000-6010.
[69]
Verma, A., Rao, K., Eluri, V., & Sharma, Y. (2020). Regulating AI in Public Health: Systems Challenges and Perspectives. ORF Occasional Paper 261.
[70]
Wang, D.-Q., Feng, L.-Y., Ye, J.-G., Zou, J.-G., & Zheng, Y.-F. (2023). Accelerating the Integration of ChatGPT and Other Large-Scale AI Models into Biomedical Research and Healthcare. MedComm-Future Medicine, 2, e43. https://doi.org/10.1002/mef2.43
[71]
Wang, Y., Kung, L., & Byrd, T. A. (2018). Big Data Analytics: Understanding Its Capabilities and Potential Benefits for Healthcare Organizations. Technological Forecasting and Social Change, 126, 3-13. https://doi.org/10.1016/j.techfore.2015.12.019
[72]
Weinert, L., Müller, J., Svensson, L., & Heinze, O. (2022). Perspective of Information Technology Decision Makers on Factors Influencing Adoption and Implementation of Artificial Intelligence Technologies in 40 German Hospitals: Descriptive Analysis. JMIR Medical Informatics, 10, e34678. https://doi.org/10.2196/34678
[73]
Wen, A., Fu, S., Moon, S., El Wazir, M., Rosenbaum, A., Kaggal, V. C. et al. (2019). Desiderata for Delivering NLP to Accelerate Healthcare AI Advancement and a Mayo Clinic NLP-as-a-Service Implementation. npj Digital Medicine, 2, Article No. 130. https://doi.org/10.1038/s41746-019-0208-8
[74]
Wolff, J., Pauling, J., Keck, A., & Baumbach, J. (2020). The Economic Impact of Artificial Intelligence in Health Care: Systematic Review. Journal of Medical Internet Research, 22, e16866. https://doi.org/10.2196/16866
[75]
Yang, J., Luo, B., Zhao, C., & Zhang, H. (2022). Artificial Intelligence Healthcare Service Resources Adoption by Medical Institutions Based on TOE Framework. Digit Health, 8. https://doi.org/10.1177/20552076221126034