|
基于陶瓷电商产品评论的情感分析研究
|
Abstract:
本文以天猫商城的景德镇红叶陶瓷青花瓷餐具盘碗碟套装为研究对象。通过爬取该研究对象的评论并对其进行文本挖掘预处理和词云绘制,采用基于BosonNLP和SnowNLP情感词典的两种情感倾向性分析方法进行情感分析和可视化展示,通过对比BosonNLP和SnowNLP两组方法得出的实验结果,从而为买家提供选购的参考标准,为卖家提供建设性的改进方向。此外,再进行相应的预处理后采用LDA主题模型进行分析。最后,利用交互可视化的方式把语句情感分数的分布情况再次直观展示,有效地验证了该产品情感偏向积极,得出了消费者可放心购买的实验结论。
This article takes the Jingdezhen Red Leaf Ceramic Blue and White Porcelain Tableware, Plate, Dish Set of Tmall as the research object. By crawling through the comments on the Red Leaf Ceramic Jingdezhen Blue and White Porcelain Tableware, Dish and Dish Set on Tmall, and performing text mining preprocessing and wordle rendering on it, two sentiment analysis methods based on BosonNLP and SnowNLP sentiment dictionaries were used for sentiment analysis and visualization display. By comparing the experimental results obtained by BosonNLP and SnowNLP methods, reference standards for buyers' selection were provided, Provide constructive improvement directions for sellers. In addition, after corresponding preprocessing, the LDA topic model is adopted Conduct analysis. Finally, the distribution of sentence sentiment scores was visually displayed through interactive visualization, effectively verifying the positive emotional bias of the product and drawing experimental conclusions that consumers can purchase with confidence.
[1] | 武聪. 基于多模态学习的消费者情感与购买意愿分析方法研究[D]: [博士学位论文]. 大连: 东北财经大学, 2022.
https://doi.org/10.27006/d.cnki.gdbcu.2022.001213 |
[2] | Zhu, F. and Zhang, X.Q. (2010) Impact of Online Consumer Reviews on Sales: The Moderating Role of Product and Consumer Characteristics. Journal of Marketing, 74, 133-148. https://doi.org/10.1509/jm.74.2.133 |
[3] | Hu, M.Q. and Liu, B. (2004) Mining and Summarizing Customer Reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, 22-25 August 2004, 168-177. |
[4] | 李琴, 李少波, 王安虹, 等.基于在线评论数据的景区门票浮动制测评分析方法[J]. 科学技术与工程, 2018, 18(1): 273-279. |
[5] | 凌万云, 方升, 张晓如. 基于用户在线评论的情感分析及景点优选排序[J]. 计算机与数字工程, 2022, 50(6): 1312-1316. |
[6] | Leonard, G., Anggreainy, M.S., Wihan, L., Santy, Lesmana, G.Y. and Yusuf, S. (2023) Support Vector Machine Based Emotional Analysis of Restaurant Reviews. Procedia Computer Science, 216, 479-484.
https://doi.org/10.1016/j.procs.2022.12.160 |
[7] | 白杨. 大数据环境下的文本挖掘教学内容探讨[J]. 无线互联科技, 2018, 15(9): 86-87. |
[8] | 魏丽. 基于LDA主题模型的电商评论数据分析[J]. 信阳农林学院学报, 2023, 33(3): 112-116.
https://doi.org/10.16593/j.cnki.41-1433/s.2023.03.023 |
[9] | Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022. |
[10] | 谭春辉, 陈晓琪, 梁远亮, 等. 隐私泄露事件中社交媒体围观者情感分析[J]. 情报科学, 2023, 41(3): 8-18. |
[11] | Dhillon, I.S. and Modha, D.S. (2001) Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42, 143-175. https://doi.org/10.1023/A:1007612920971 |
[12] | 关鹏, 王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016(9): 42-50. |