Tetra-bromo-methyl-resorcin[4]arene cavitands were synthesized and C-2 position amine functionalized to obtain C-propyl-o-toluidine-methyl-resorcin[4]arene cavitand 4, and the crystal containing one solvate molecule of ethanol was obtained in a dichloromethane-ethanol solvent system, its structure crystallized in the monoclinic space group P21/n, with a = 12.521(3) Å, b = 21.738(6) Å, c = 25.353(6) Å, α = 90˚, β = 102.372(4)˚, γ = 90˚, and Z = 4. The compound was determined by single-crystal X-ray diffraction and characterized by 1H NMR, FT-IR and elemental analyses.
References
[1]
Shalaeva, Y.V., Morozova, J.E., Gubaidullin, A.T., Saifina, A.F., Syakaev, V.V., Ermakova, A.M. and Konovalov, A.I. (2018) Gold Nanoparticles, Capped by Carboxy-Calix[4]resorcinarenes: Effect of Structure and Concentration of Macrocycles on the Nanoparticles Size and Aggregation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92, 211-221. https://doi.org/10.1007/s10847-018-0836-7
[2]
Shebitha, A.M., Shaibuna, M., Hiba, K. and Sreekumar, K. (2022) Synthesis, Characterization and DFT-D Studies of 2-Aminoethoxycalix[4]resorcinarenes: A Novel Heterogeneous Organocatalyst. Catalysis Letters, 152, 3017-3030. https://doi.org/10.1007/s10562-021-03895-z
[3]
Ryvlin, D., Dumele, O., Linke, A., Fankhauser, D., Schweizer, W. B., Diederich, F. and Waldvogel, S. R. (2017) Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances. ChemPlusChem, 82, 493-497. https://doi.org/10.1002/cplu.201700077
[4]
Pinalli, R., Pedrini, A. and Dalcanale, E. (2018) Environmental Gas Sensing with Cavitands. Chemistry—A European Journal, 24, 1010-1019. https://doi.org/10.1002/chem.201703630
[5]
Guo, T.T., Cheng, D.M., Yang, J., Xu, X. and Ma, J.F. (2019) Calix[4]resorcinarene-Based [Co16] Coordination Cages Mediated by Isomorphous Auxiliary Ligands for Enhanced Proton Conduction. Chemical Communications, 55, 6277-6280. https://doi.org/10.1039/C9CC01828J
[6]
Pei, W.Y., Xu, G., Yang, J., Wu, H., Chen, B., Zhou, W. and Ma, J.F. (2017) Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning. Journal of the American Chemical Society, 139, 7648-7656. https://doi.org/10.1021/jacs.7b03169
[7]
Kobayashi, K. and Yamanaka, M. (2015) Self-Assembled Capsules Based on Tetrafunctionalized Calix[4]resorcinarene Cavitands. Chemical Society Reviews, 44, 449-466. https://doi.org/10.1039/C4CS00153B
[8]
Furer, V.L., Vandyukov, A.E., Ahkmetzyanova, Z.V., Burilov, V.A., Solovieva, S.E., Antipin, I.S. and Kovalenko, V.I. (2021) Comparative Study of the Vibrational Spectra of Carboxylate Azocalix[4]arenes and Azothiacalix[4]arenes. Journal of Molecular Structure, 1241, Article ID: 130662. https://doi.org/10.1016/j.molstruc.2021.130662
[9]
Gropp, C., Quigley, B.L. and Diederich, F. (2018) Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation. Journal of the American Chemical Society, 140, 2705-2717. https://doi.org/10.1021/jacs.7b12894
[10]
Wang, Y.Y., Kong, Y., Zheng, Z., Geng, W.C., Zhao, Z.Y., Sun, H. and Guo, D.S. (2019) Complexation of a Guanidinium-Modified Calixarene with Diverse Dyes and Investigation of the Corresponding Photophysical Response. Beilstein Journal of Organic Chemistry, 15, 1394-1406. https://doi.org/10.3762/bjoc.15.139
[11]
Ovsyannikov, A., Solovieva, S., Antipin, I. and Ferlay, S. (2017) Coordination Polymers Based on Calixarene Derivatives: Structures and Properties. Coordination Chemistry Reviews, 352, 151-186. https://doi.org/10.6060/mhc170512a
[12]
Banerjee, B., Kaur, G. and Kaur, N. (2021) p-Sulfonic Acid Calix[n]arene Catalyzed Synthesis of Bioactive Heterocycles: A Review. Current Organic Chemistry, 25, 209-222. https://doi.org/10.2174/1385272824999201019162655
[13]
Karpus, A., Yesypenko, O., Cherenok, S., Boiko, V., Kalchenko, O., Voitenko, Z. and Kalchenko, V. (2019) Chiral Phosphorus-Containing Calixarenes. Phosphorus, Sulfur, and Silicon and the Related Elements, 194, 471-475. https://doi.org/10.1080/10426507.2018.1539994
[14]
Monnereau, L., El Moll, H., Sémeril, D., Matt, D. and Toupet, L. (2014) Resorcinarenyl-Phosphines in Suzuki-Miyaura Cross-Coupling Reactions of Aryl Chlorides. European Journal of Inorganic Chemistry, 2014, 1364-1372. https://doi.org/10.1002/ejic.201301473
[15]
Beyeh, N.K., Valkonen, A. and Rissanen, K. (2010) Piperazine Bridged Resorcinarene Cages. Organic Letters, 12, 1392-1395. https://doi.org/10.1021/ol100407f
[16]
Beyeh, N.K., Cetina, M. and Rissanen, K. (2012) Binding Modes of Nonspherical Anions to N-Alkylammonium Resorcinarenes in the Solid State. Crystal Growth & Design, 12, 4919-4926. https://doi.org/10.1021/cg3008409
[17]
Kashapov, R.R., Zakharova, L.Y., Saifutdinova, M.N., Gavrilova, E.L. and Sinyashin, O.G. (2015) Self-Assembly Strategies for Improving the Water Solubility of New Amino Acid Calix[4]resorcinarenes. Tetrahedron Letters, 56, 2508-2511. https://doi.org/10.1016/j.tetlet.2015.03.113
[18]
Kashapov, R.R., Zakharova, L.Y., Saifutdinova, M.N., Kochergin, Y.S., Gavrilova, E.L. and Sinyashin, O.G. (2015) Construction of a Water-Soluble Form of Amino Acid C-Methylcalix[4]resorcinarene. Journal of Molecular Liquids, 208, 58-62. https://doi.org/10.1016/j.molliq.2015.04.025
[19]
Liu, J.L., Liu, X.L., Jia, A.Q., Shi, H.T. and Zhang, Q.F. (2020) Supramolecular Structures and Crystal Stability of Diisobutylaminomethylated Calix[4]resorcinarenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 98, 49-56. https://doi.org/10.1007/s10847-020-01008-8
[20]
Fox, O.D., Cookson, J., Wilkinson, E.J., Drew, M.G., MacLean, E.J., Teat, S.J. and Beer, P.D. (2006) Nanosized Polymetallic Resorcinarene-Based Host Assemblies That Strongly Bind Fullerenes. Journal of the American Chemical Society, 128, 6990-7002. https://doi.org/10.1021/ja060982t
[21]
Fox, O.D., Drew, M.G. and Beer, P.D. (2000) Resorcarene-Based Nanoarchitectures: Metal-Directed Assembly of a Molecular Loop and Tetrahedron. Angewandte Chemie International Edition, 39, 135-140. https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<135::AID-ANIE135>3.0.CO;2-N
[22]
Boerrigter, H., Verboom, W. and Reinhoudt, D.N. (1997) Novel Resorcinarene Cavitand-Based CMP(O) Cation Ligands: Synthesis and Extraction Properties. The Journal of Organic Chemistry, 62, 7148-7155. https://doi.org/10.1021/jo9703414
[23]
Smart, S. (1998) For Windows NT (Version 6.02a). Bruker Analytical X-Ray Instruments Inc., Madison.
[24]
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Göttingen.
[25]
Sheldrick, G.M. (2008) A Short History of SHELX. Acta Crystallographica Section A, 64, 112-122.
[26]
Sheldrick, G.M. (1997) SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison.
[27]
Boerrigter, H., Verboom, W., van Hummel, G.J., Harkema, S. and Reinhoudt, D.N. (1996) Selective Functionalization of Resorcinarene Cavitands; Single Crystal X-Ray Structure of a Distally Functionalized Cavitand. Tetrahedron Letters, 37, 5167-5170. https://doi.org/10.1016/0040-4039(96)01027-1