We
study afresh how the glucose control system anomalies impact the organicity of
the glucose homeostasis and build up events of persistent hyperglycemia and
diabetes mellitus. We have used critically the state of art literature related
to the subject, in order to cross, to compare, and to organize the relevant
contents to create a logical and consistent support to the finds. We show that
it is consistent to assume that persistent hyperglycemia and diabetes mellitus
can have precursors not only in pancreas, but also in brain, mainly induced by
noxious dysfunctions of hypothalamus sensor neurons circuits and external
noxious elements, causing pancreas overload, and the consequent exhaustion—overburden.
References
[1]
De Assis, A.S. and da Nobrega, J.L.P. (2022) Can Persistent Children Hyperglycemia Be Induced by Causes Other Than Pancreas Failure? Open Journal of Endocrine and Metabolic Diseases, 12, 135-158. https://doi.org/10.4236/ojemd.2022.127011
[2]
Karamanou, M., Protogerou, A., Tsoucalas, G., Androutsos, G. and Poulakou-Rebelakou, E. (2016) Milestones in the History of Diabetes Mellitus: The Main Contributors. World Journal of Diabetes, 7, 1-7. https://doi.org/10.4239/wjd.v7.i1.1
[3]
Sahasrabudhe, R.A., Limaye, T.Y. and Gokhale, V.S. (2016) Unexplained Persistent Hyperglycaemia in a Type I Diabetes Patient—Is Injection Site Lipohypertrophy the Cause? Journal of Clinical and Diagnostic Research, 10, OD05-OD06.
[4]
Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., et al. (2014) Reversal of Diabetes with Insulin-Producing Cells Derived in vitro from Human Pluripotent Stem Cells. Nature Biotechnology, 32, 1121-1133. https://doi.org/10.1038/nbt.3033
[5]
Shapiro, A.M.J., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., et al. (2000) Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. The New England Journal of Medicine, 343, 230-238. https://doi.org/10.1056/NEJM200007273430401
[6]
Lowell, B.B. (2019) New Neuroscience of Homeostasis and Drives for Food, Water, and Salt. The New England Journal of Medicine, 380, 459-471. https://doi.org/10.1056/NEJMra1812053
[7]
Bozadjieva, N., Ross, R.A., Lowell, B. and Flak, J.N. (2019) 313-OR: PACAP from the Ventromedial Hypothalamic Nucleus Controls Both Energy Balance and Glucose Homeostasis. Diabetes, 68, 313-OR.
[8]
Routh, V.H., McArdle, J.J., Sanders, N.M., Song, Z. and Wang, R. (2007) Glucose Sensing Neurons. In: Lajtha, A. and Johnson, D.A., Eds., Handbook of Neurochemistry and Molecular Neurobiology, Springer, New York, 205-228. https://link.springer.com/referenceworkentry/10.1007/978-0-387-30374-1_7 https://doi.org/10.1007/978-0-387-30374-1_7
[9]
Routh, V.H., Hao, L.H., Santiago, A.M., Sheng, Z.Y. and Zhou, C.X. (2014) Hypothalamic Glucose Sensing: Making Ends Meet. Frontiers in Systems Neuroscience, 8, Article 236.
[10]
Raman, P.G. (2017) Central Nervous System Control of Glucose Homeostasis. Open Journal of Endocrine and Metabolic Diseases, 7, 227-234. https://doi.org/10.4236/ojemd.2017.712020
[11]
Fujikawa, T. (2021) Central Regulation of Glucose Metabolism in an Insulin-Dependent and Independent Manner. Journal of Neuroendocrinology, 33, e12941.
[12]
Güemes, A. and Georgiou, P. (2018) Review of the Role of the Nervous System in Glucose Homoeostasis and Future Perspectives towards the Management of Diabetes. Bioelectronic Medicine, 4, Article No. 9. https://doi.org/10.1186/s42234-018-0009-4
[13]
Marik, P.E. and Bellomo, R. (2013) Stress Hyperglycemia: An Essential Survival Response. Critical Care, 17, Article No. 305. https://doi.org/10.1186/cc12514
[14]
Coll, A.P. and Yeo, G.S.H. (2013) The Hypothalamus and Metabolism: Integrating Signals to Control Energy and Glucose Homeostasis. Current Opinion in Pharmacology, 13, 970-976. https://doi.org/10.1016/j.coph.2013.09.010
[15]
Parton, L.E., Ye, C.P., Coppari, R., Enriori, P.J., Choi, B., Zhang, C.Y., Xu, C., Vianna, C.R., Balthasar, N., Lee, C.E., Elmquist, J.K., Cowley, M.A. and Lowell, B.B. (2007) Glucose Sensing by POMC Neurons Regulates Glucose Homeostasis and Is Impaired in Obesity. Nature, 449, 228-232. https://doi.org/10.1038/nature06098
[16]
Darbre, P.D. (2022) Endocrine Disruption and Human Health. 2 Edition. Elsevier, 445-461. https://doi.org/10.1016/B978-0-12-821985-0.00012-8
[17]
Hashikawa, N., Utaka, Y., Ogawa, T., Tanoue, R., Morita, Y., Yamamoto, S., Yamaguchi, S., Kayano, M., Zamami, Y. and Hashikawa-Hobara, N. (2017) HSP105 Prevents Depression-Like Behavior by Increasing Hippocampal Brain-Derived Neurotrophic Factor Levels in Mice. Science Advances, 3, e1603014. https://doi.org/10.1126/sciadv.1603014
[18]
Alvarsson, A. and Stanley, S.A. (2018) Remote Control of Glucose-Sensing Neurons to Analyze Glucose Metabolism. American Journal of Physiology-Endocrinology and Metabolism, 315, E327-E339. https://doi.org/10.1152/ajpendo.00469.2017
[19]
Feldberg, W., Pyke, D. and Stubbs, W.A. (1985) Hyperglycaemia: Imitating Claude Bernard’s Piqûre with Drugs. Journal of the Autonomic Nervous System, 14, 213-228. https://doi.org/10.1016/0165-1838(85)90111-0
[20]
Zhao, Z.D., Yanga, W.Z., Gao, C.C., Fua, X., Zhang, W., Zhou, Q., Chen, W.P., Nia, X.Y., Lin, J.K., Yang, J., Xu, X.H. and Shen, W.L. (2017) A Hypothalamic Circuit That Controls Body Temperature. Proceedings of the National Academy of Sciences of the United States of America, 114, 2042-2047.
[21]
Babic, T. and Travagli, R.A. (2016) Neural Control of the Pancreas. Pancreapedia: Exocrine Pancreas Knowledge Base.
Schmid, J., Ludwig, B., Schally, A.V., Steffen, A., Ziegler, C.G., Block, N.L., Koutmani, Y., Brendel, M.D., Karalis, K.P., Simeonovic, C.J., Licinio, J., Ehrhart-Bornstein, M. and Bornstein, S.R. (2011) Modulation of Pancreatic Islets-Stress Axis by Hypothalamic Releasing Hormones and 11β-Hydroxysteroid Dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 108, 13722-13727. https://doi.org/10.1073/pnas.1110965108
[24]
Roh, E., Song, D.K. and Kim, M.-S. (2016) Emerging Role of the Brain in the Homeostatic Regulation of Energy and Glucose Metabolism. Experimental & Molecular Medicine, 48, 216.
[25]
Kume, S., Kondo, M., Maeda, S., Nishio, Y., Yanagimachi, T., Fujita, Y., Haneda, M., Kondo, K., Sekine, A., Araki, S., Araki, H., Chin-Kanasaki, M., Ugi, S., Koya, D., Kitahara, S., Maeda, K., Kashiwagi, A., Uzu, T. and Maegawa, H. (2016) Hypothalamic AMP-Activated Protein Kinase Regulates Biphasic Insulin Secretion from Pancreatic β Cells during Fasting and in Type 2 Diabetes. eBioMedicine, 13, 168-180. https://doi.org/10.1016/j.ebiom.2016.10.038
[26]
Hoenig, M., MacGregor, L.C. and Matschinsky, F.M. (1986) In vitro Exhaustion of Pancreatic β-Cells. American Journal of Physiology-Endocrinology and Metabolism, 250, E502-E511. https://doi.org/10.1152/ajpendo.1986.250.5.E502
[27]
Cheng, C.W., Villani, V., Buono, R., Sneddon, J.B., Perin, L., Longo, V.D., et al. (2017) Fasting-Mimicking Diet Promotes Ngn3-Driven b-β Regeneration to Reverse Diabetes. Cell, 168, 775-788.E12. https://doi.org/10.1016/j.cell.2017.01.040
[28]
Kestner, M. (2016) Your Pancreas May Be Working Too Hard. https://www.murfreesboropost.com/opinion/your-pancreas-may-be-working-too-hard/article_19b3f421-46ca-52cf-8f54-d78348b91699.html
[29]
(2018) Stress May Accelerate Pancreatic Cancer, Study Finds. https://www.cuimc.columbia.edu/news/stress-may-accelerate-pancreatic-cancer-study-finds
[30]
Diabetes UK (2022) Haemochromatosis and Diabetes. https://www.diabetes.org.uk
[31]
The Power of Your Pancreas. News in Health, National Institutes of Health, U.S. Department of Health and Human Services. https://newsinhealth.nih.gov/2017/02/power-your-pancreas
[32]
Toren, E., Burnette, K.S., Banerjee, R.R., Hunter, C.S. and Tse, H.M. (2021) Partners in Crime: β-Cells and Autoimmune Responses Complicit in Type 1 Diabetes Pathogenesis. Frontiers in Immunology, 12, Article 756548. https://doi.org/10.3389/fimmu.2021.756548
[33]
Bernard, C. (1877) Lecons sur le diabete. Jean-Baptiste Baillière, Paris.
Pall, M.L. (2022) Low Intensity Electromagnetic Fields Act via Voltage-Gated Calcium Channel (VGCC) Activation to Cause Very Early Onset Alzheimer’s Disease: 18 Distinct Types of Evidence. Current Alzheimer Research, 19, 119-132. https://doi.org/10.2174/1567205019666220202114510
[36]
World Health Organization (2005) Electromagnetic Fields and Public Health: Electromagnetic Hypersensitivity. https://www.who.int/teams/environment-climate-change-and-health/radiation-and-health/non-ionizing/el-hsensitivity
[37]
Pyke, D.A. (1966) The Year Book of Endocrinology. Proceedings of the Royal Society of Medicin, 59, 472.
[38]
Lundqvist, M.H., Almby, K., Abrahamsson, N. and Eriksson, J.W. (2019) Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Frontiers in Physiology, 10, Article 457. https://doi.org/10.3389/fphys.2019.00457
[39]
Savic, I., Perski, A. and Osika, W. (2018) MRI Shows That Exhaustion Syndrome Due to Chronic Occupational Stress Is Associated with Partially Reversible Cerebral Changes. Cerebral Cortex, 28, 894-906. https://doi.org/10.1093/cercor/bhw413
[40]
Bernard, C. (1855) Leçons de physiologieexpérimentaleappliquée à lamédecine, faitesauCollège de France. Paris, 1855-1856.
[41]
Bernard, C. (1877) Leçons sur le Diabèteet la GlycognèseAnimale. Paris, 1877-1878.
[42]
Young, F.G. (1957) Claude Bernard and the Discovery of Glycogen. The BMJ, 1, 1431-1437. https://doi.org/10.1136/bmj.1.5033.1431
[43]
Hill, A.B. (1965) The Environment and Disease: Association or Causation? Journal of the Royal Society of Medicine, 58, 295-300. https://doi.org/10.1177/003591576505800503
[44]
Lowell, B.B. Bradford, M. and Lowell, B. (2021) Brain Control of Physiology and Behavior. Boston Area Diabetes Endocrinology Research Centers.
[45]
Bernard, C. (1967) An Introduction to the Study of Experimental Medicine. Schuman, New York.
[46]
da Mota Gomes, M. and Engelhardt, E. (2014) Claude Bernard: Bicentenary of Birth and His Main Contributions to Neurology. Arquivos de Neuro-Psiquiatria, 72, 322-325. https://doi.org/10.1590/0004-282X20130239
[47]
Katz, A. (2022) A Century of Exercise Physiology: Key Concepts in Regulation of Glycogen Metabolism in Skeletal Muscle. European Journal of Applied Physiology, 122, 1751-1772. https://doi.org/10.1007/s00421-022-04935-1
[48]
Mountjoy, P.D. and Rutte, G.A. (2007) Glucose Sensing by Hypothalamic Neurons and Pancreatic Islet Cells: AMPle Evidence for Common Mechanisms? Experimental Physiology, 92, 311-319. https://doi.org/10.1113/expphysiol.2006.036004
[49]
Stanley, S.A., et al. (2012) Radiowave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice. Science, 336, 604-608. https://doi.org/10.1126/science.1216753
[50]
Chan, O. and Sherwin, R.S. (2012) Hypothalamic Regulation of Glucose-Stimulated Insulin Secretion. Diabetes, 61, 564-565. https://doi.org/10.2337/db11-1846
[51]
Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M. and Pralle, A. (2010) Remote Control of Ion Channels and Neurons through Magnetic-Field Heating of Nanoparticles. Nature Nanotechnology, 5, 602-606. https://doi.org/10.1038/nnano.2010.125
[52]
Chapter 17: Hypothalamic Regulation of Hormonal Functions. https://accessmedicine.mhmedical.com/content.aspx?bookid=2139§ionid=160312615
[53]
Tao, J.K., Campbell, J.N., Tsai, L.T., Wu, C., Liberles, S.D. and Lowell, B.B. (2021) Highly Selective Brain-to-Gut Communication via Genetically Defined Vagus Neurons. Neuron, 109, 2106-2115. https://doi.org/10.1016/j.neuron.2021.05.004
[54]
(2016) Neurons in Hypothalamus Help Maintain Blood Glucose Levels, Rockefeller University. http://davidson.weizmann.ac.il/en/online/sciencenews/2019-wolf-prize https://www.rockefeller.edu/news/11045-using-magnetic-forces-to-control-neurons-study-finds-the-brain-plays-key-role-in-glucose-metabolism