The granitic plutons associated with the
Glito-Kpatala shear zone are composed of biotite and amphibole granodiorites,
biotite granites, two-mica granites and aplitic granites, which are very poorly represented.
The chemical and mineralogical compositions of these facies indicate
that they are I type and belong to high-K calc-alkaline series, with a chemical
metaluminous character displayed by the granodiorites relative to the biotite
and two-mica facies whose chemical compositions vary between metaluminous and
peraluminous caracter. The Th/Ta (14.04-43.82
ppm, mean = 26.05), Th/U (2.58 to 15.05 ppm, mean = 5.85 ppm), Zr/Hf (25.27 to
37.21, mean = 30.67 ppm) and Rb/Sr (0.16 to 4.32; mean = 1.67 ppm) ratios of
these granitoids reveal a strong crustal involvement in their magmatogenesis.
Variations in CaO/Na2O (0.47-1.44
ppm), Rb/Sr (0.14-0.27 ppm), Rb/Ba (0.07-0.14 ppm) and Sr/Y (38.21-174.42
ppm) ratios indicate that biotite and amphibole granodiorites with their excessive
Ni (135.37 - 139.51 ppm)
and Cr (395.73-447.74 ppm)
References
[1]
Kpanzou, S.A.M., Agbossoumondé, Y., González-Jiménez, J.M., Tairou, M.S. and Garcia-Casco, A. (2022) Pétrologie et métallogénie des indices de Ni-Cr associés au massif basique-ultrabasique de Oké, Togo. Afrique SCIENCE, 21, 53-69. https://www.afriquescience.net/PDF/21/1/5.pdf
[2]
Ganade de Araujo, C.E., Cordani, U.G., Agbossoumondé, Y., Caby, R., Basei, M.A.S., Weinberg, R.F. and Sato, K. (2016) Tightening-Up NE Brazil and NW Africa Connections: Advances in Zircon Geochronology towards a Complete Plate Tectonic Cycle in the Dahomeyide Belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276, 24-42. https://doi.org/10.1016/j.precamres.2016.01.032
[3]
Caen-Vachette, M., Pinto, M. and Roques, K.J.M. (1979) Plutons éburnéens et métamorphisme dans le socle cristallin de la chaîne pan-africaine au Togo et au Bénin. Revue de Géologie Dynamique et de Géographie Physique, 21, 351-357.
[4]
Kalsbeek, F., Affaton, P., Ekwueme, B., Frei, R. and Thrane, K. (2012) Geochronology of Granitoid and Metasedimentary Rocks from Togo and Benin, West Africa: Comparisons with NE Brazil. Precambrian Research, 196/197, 218-233. https://doi.org/10.1016/j.precamres.2011.12.006
[5]
Ferré, E., Gleizes, G. and Caby, R. (2002) Obliquely Convergent Tectonics and Granite Emplacement in the Trans-Saharan Belt of Eastern Nigeria: A Synthesis. Precambrian Research, 114, 199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
[6]
Rahaman, M.A., van Breemen, O., Bowden, P. and Bennett, J.N. (1984) Age Migrations of Anorogenic Ring Complexes in Northern Nigeria. The Journal of Geology, 92, 173-184. https://doi.org/10.1086/628847
[7]
Castaing, C., Aregba, A. and Chevremont, P. (1988) Les unités gneissiques et la zone de cisaillement crustal du Sud-Togo (Gneissic Units and Crustal Shear Zone of South Togo). Journal of African Earth Sciences, 7, 821-828.
[8]
Adissin Glodji, C. L. (2012) La zone de cisaillement de Kandi et le magmatisme associé dans la région de Savalou-Dassa (Bénin): étude structurale, pétrologique et géochronologique. Sci. de la Terre, 276 p.
[9]
Affaton, P. (1990) Le bassin des Volta (Afrique de l’Ouest): Une marge passive d’age protérozoïque supérieur, tectonisée au Panafricain (600±50 Ma). Edit. ORSTOM, Collection Etudes & Thèses, Paris, 500 p.
[10]
Agbossoumondé, Y., Ménot, R.-P., Paquette, J.L., Guillot, S., Yéssoufou, S. and Perrache, C. (2007) Petrological and Geochronological Constraints on the Origin of the Palimé-Amlamé Granitoids (South Togo, West Africa): A Segment of the West African Craton Paleoproterozoic Margin Reactivated during the Pan-African Collision. Gondwana Research, 12, 476-488. https://doi.org/10.1016/j.gr.2007.01.004
[11]
Attoh, K. and Morgan, J. (2004) Geochemistry of High-Pressure Granulites from the Pan-African Dahomeyide Orogen, West Africa: Constraints on the Origin and Composition of Lower Crust. Journal of African Earth Sciences, 39, 201-208 https://doi.org/10.1016/j.jafrearsci.2004.07.048
[12]
Ménot, R.-P. and Seddoh, K.F. (1985) The Eclogites of Lato Hills (South Togo, West Africa): Relies from Early Tectonometamorphic Evolution of the Pan-African Orogeny. Chemical Geology, 50, 313-330. https://doi.org/10.1016/0009-2541(85)90126-3
[13]
Attoh, K. (1998a) High-Pressure Granulite Facies Metamorphism in the Pan-African Dahomeyide Orogen, West Africa. The Journal of Geology, 106, 236-246. https://doi.org/10.1086/516019
[14]
Caby, R. and Boessé, J.M. (2001) Pan-African Nappe System in Southwest Nigeria: The Ife-Ilesha Schist Belt. Journal of African Earth Sciences, 33, 211-225. https://doi.org/10.1016/S0899-5362(01)80060-9
[15]
Glodji, L.A., Komadja, C. and Yessoufou, S. (2017) Mise en place de magmas anté et syn-tectonique dans le complexe intrusif de Wari-Maro dans la zone de cisaillement de Kandi, Centre-Bénin, Afrique de l’Ouest. Afrique SCIENCE, 13, 202-211. http://www.afriquescience.info
[16]
Ludwig, K.R. (2006) User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. https://worldcat.org/title/695595118
[17]
Didier, J. (1974) Granites and Their Enclaves. The Bearing of Enclaves on the Origin of Granites. Geological Magazine, 111, 467-468.
[18]
Barbarin, B. (1999) A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46, 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
[19]
Dada, O.A. (2012) Geochemistry of Biotite and Its Implications to the Origin of Bauchi and Saminaka Charnockites, North Central Nigeria. International Journal of Geology, Earth & Environmental Sciences, 2, 163-172.
[20]
Abdel-Rahman, A.F.M. (1994) Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35, 525-541. https://doi.org/10.1093/petrology/35.2.525
[21]
Leake, B.E. (1997) Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246.
[22]
Miller, C.F., Stoddard, E.F., Bradfish, L.J. and Dollase, W.A. (1981) Implications Composition of Plutonic Musgovite. The Canadian Mineralogist, 19, 25-34. https://rruff.geo.arizona.edu/doclib/cm/vol19/CM19_25.pdf
[23]
Harker, A. (1909) The Natural History of Igneous Rocks. Methuen and Co., London, 420-423. https://doi.org/10.1017/s0016756800124744
[24]
Streckeisen, A. (1974) Classification and Nomenclature of Plutonic Rocks Recommendations. Neues Jahrbuch für Mineralogie, Monatshefte, 1973, 149-164. https://doi.org/10.1127/njmm/1973/1973/149
[25]
Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The Interpretation of Igneous Rocks. George Allen & Unwin, London, 450 p. https://doi.org/10.1007/978-94-017-3373-1
[26]
Chappell, B.W. (1999) Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46, 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
[27]
Chappell, B.W., Bryant, C.J. and Wyborn, D. (2012) Peraluminous I-Type Granites. Lithos, 153, 142-153. https://doi.org/10.1016/j.lithos.2012.07.008
Irvine, T.N. and Baragar, W.R.A. (1971) A Guide to the Chemical Classification of the Common Volcanic Rocks. The Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
[30]
Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. https://doi.org/10.1007/BF00384745
[31]
Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
[32]
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42, 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
[33]
Boynton, W.V. (1984) Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Developments in Geochemistry, Vol. 2, Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
[34]
Müller, D., Rock, N.M.S. and Groves, D.I. (1992) Geochemical Discrimination between Shoshonitic and Potassic Volcanic Rocks in Different Tectonic Settings: A Pilot Study. Mineralogy and Petrology, 46, 259-289. https://doi.org/10.1007/BF01173568
[35]
Harris, C., Marsh, J.S. and Milner, S.C. (1999) Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia: Evidence for the Progressively Decreasing Effect of Crustal Contamination. Journal of Petrology, 40, 1377-1397. https://doi.org/10.1093/petroj/40.9.1377
[36]
Martin, H. (1993) The Mechanisms of Petrogenesis of the Archaean Continental Crust-Comparison with Modern Processes. Lithos, 30, 373-388. https://doi.org/10.1016/0024-4937(93)90046-F
[37]
Cullers, R.L. and Graf, J.L. (1984) Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks—Ore Petrogenesis. In: Developments in Geochemistry, Vol. 2, Elsevier, Amsterdam, 275-316. https://doi.org/10.1016/B978-0-444-42148-7.50013-7
[38]
Liégeois, J.P., Navez, J., Hertogen, J. and Black, R. (1998) Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos, 45, 1-2. https://doi.org/10.1016/S0024-4937(98)00023-1
[39]
Kwékam, M., Talla, V., Fozing, E.M., Tcheumenak Kouémo, J., Dunkl, I. and Njonfang, E. (2020) The Pan-African High-K I-Type Granites from Batié Complex, West Cameroon: Age, Origin, and Tectonic Implications. Frontiers in Earth Science, 8, Article No. 363. https://doi.org/10.3389/feart.2020.00363
[40]
Etheridge, M.A. and Coope, J.A. (1981) Rb/Sr Isotopic and Geochemical Evolution of a Recrystallized Shear (Mylonite) Zone at Broken Hill. Contributions to Mineralogy and Petrology, 78, 74-84. https://doi.org/10.2307/j.ctvc77m52.94
[41]
Peter Gromet, L. and Silver, L.T. (1983) Rare Earth Element Distributions among Minerals in a Granodiorite and Their Petrogenetic Implications. Geochimica et Cosmochimica Acta, 47, 925-939. https://doi.org/10.1016/0016-7037(83)90158-8
[42]
Sawka, W.N. and Chappell, B.W. (1988) Fractionation of Uranium, Thorium and Rare Earth Elements in a Vertically Zoned Granodiorite: Implications for Heat Production Distributions in the Sierra Nevada Batholith, California, U.S.A. Geochimica et Cosmochimica Acta, 52, 1131-1143. https://doi.org/10.1016/0016-7037(88)90267-0
[43]
Romick, J.D., Kay, S.M. and Kay, R.W. (1992) The Influence of Amphibole Fractionation on the Evolution of Calc-Alkaline Andesite and Dacite Tephra from the Central Aleutians, Alaska. Contributions to Mineralogy and Petrology, 112, 101-118. https://doi.org/10.1007/BF00310958
[44]
Miller, C.F., McDowell, S.M. and Mapes, R.W. (2003) Hot and Cold Granites: Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31, 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[45]
Miller, C.F. and Mittlefehldt, D.W. (1982) Depletion of Light Rare-Earth Elements in Felsic Magmas. Geology, 10, 129-133. https://doi.org/10.1130/0091-7613(1982)10<129:DOLREI>2.0.CO;2
[46]
Lee, C.T.A. and Morton, D.M. (2015) High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409, 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
[47]
Rollinson, H.R. (2014) Using Geochemical Data. Routledge, London. https://doi.org/10.4324/9781315845548
[48]
Davidson, J., Turner, S., Handley, H., Macpherson, C. and Dosseto, A. (2007) Amphibole “Sponge” in Arc Crust? Geology, 35, 787-790. https://doi.org/10.1130/G23637A.1
[49]
Macpherson, C.G. (2008) Lithosphere Erosion and Crustal Growth in Subduction Zones: Insights from Initiation of the Nascent East Philippine Arc. Geology, 36, 311-314. https://doi.org/10.1130/G24412A.1
[50]
Cocherie, A. (1986) Systematic Use of Trace Element Distribution Patterns in Log-Log Diagrams for Plutonic Suites. Geochimica et Cosmochimica Acta, 50, 2517-2522. https://doi.org/10.1016/0016-7037(86)90034-7
[51]
Jung, S., Masberg, P., Mihm, D. and Hoernes, S. (2009) Partial Melting of Diverse Crustal Sources-Constraints from Sr-Nd-O Isotope Compositions of Quartz Diorite-Granodiorite-Leucogranite Associations (Kaoko Belt, Namibia). Lithos, 111, 236-251. https://doi.org/10.1016/j.lithos.2008.10.010
[52]
Gregory Shellnutt, J., Wang, C.Y., Zhou, M.F. and Yang, Y. (2009) Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35, 45-55. https://doi.org/10.1016/j.jseaes.2008.12.003
[53]
Hofmann, A.W. (1988) Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90, 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
[54]
Harris, N.B.W. and Inger, S. (1992) Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110, 46-56. https://doi.org/10.1007/BF00310881
[55]
Condie, K.C. (1993) Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104, 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
[56]
Eby, G.N. (1992) Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20, 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[57]
Rudnick, R.L. and Fountain, D.M. (1995) Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33, 267-309. https://doi.org/10.1029/95RG01302
[58]
Barth, M.G., McDonough, W.F. and Rudnick, R.L. (2000) Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165, 197-213. https://doi.org/10.1016/S0009-2541(99)00173-4
[59]
Rudnick, R.L. and Gao, S. (2003) Composition of the Continental Crust. Chemical Geology, 145, 1-64.
[60]
Roberts, M.P. and Clemens, J.D. (2016) Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology, 21, 825-828.
[61]
Patiño Douce, A.E. (2000) What Do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168, 55-75. https://doi.org/10.1144/GSL.SP.1999.168.01.05
Moyen, J.F. (2009) High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 112, 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
[64]
Helz, R. (1973) Phase Relations of Basalts in Their Melting Range at PH2O = 5 kb as a Function of Oxygen Fugacity Part I. Mafic Phases. Journal of Petrology, 14, 249-302. https://petrology.oxfordjournals.org/
[65]
Jung, S. and Pfänder, J.A. (2007) Source Composition and Melting Temperatures of Orogenic Granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry. European Journal of Mineralogy, 19, 859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774
[66]
El Amrani, I.E., El Mouraouah, A. and Haimeur, J. (1992) Origine et signification des enclaves microgrenues sombres gabbroiques de la granodiorite des Oulad Ouaslam (Jebilet-Maroc). Bulletin de l’Institut Scientifique, Rabat, No. 16, 8-14.
[67]
Weyer, S., Münker, C. and Mezger, K. (2003) Nb/Ta, Zr/Hf and REE in the Depleted Mantle: Implications for the Differentiation History of the Crust-Mantle System. Earth and Planetary Science Letters, 205, 309-324. https://doi.org/10.1016/S0012-821X(02)01059-2
[68]
Huang, H., Niu, Y., Zhao, Z., Hei, H. and Zhu, D. (2011) On the Enigma of Nb-Ta and Zr-Hf Fractionation—A Critical Review. Journal of Earth Science, 22, 52-66. https://doi.org/10.1007/s12583-011-0157-x
[69]
Pearce, J. (1996) Source of Granitic Rocks. Episodes, 19, 120-125.
[70]
Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983. https://petrology.oxfordjournals.org/
[71]
Maniar, P.D. and Piccoli, P.M. (1989) Geological Society of America Bulletin Tectonic Discrimination of Granitoids Subscribe Tectonic Discrimination of Granitoids. GSA Bulletin, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635
[72]
Harris, N.B.W., Pearce, J.A. and Tindle, A.G. (1986) Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19, 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
[73]
Affaton, P., Kröner, A. and Seddoh, K.F. (2000) Pan-African Granulite Formation in the Kabye Massif of Northern Togo (West Africa): Pb-Pb Zircon Ages. International Journal of Earth Sciences, 88, 778-790. https://doi.org/10.1007/s005310050305
[74]
Barbarin, B. (1990) Granitoids: Main Petrogenetic Classifications in Relation to Origin and Tectonic Setting. Geological Journal, 25, 227-238. https://doi.org/10.1002/gj.3350250306
[75]
Tindle, A.G. and Pearce, J.A. (1981) Petrogenetic Modelling of in Situ Fractional Crystallization in the Zoned Loch Doon Pluton, Scotland. Contributions to Mineralogy and Petrology, 78, 196-207. https://doi.org/10.1007/BF00373781
[76]
Bernard-Griffiths, J., Peucat, J.J. and Ménot, R.P. (1991) Isotopic (RbSr, UPb and SmNd) and Trace Element Geochemistry of Eclogites from the Pan-African Belt: A Case Study of REE Fractionation during High-Grade Metamorphism. Lithos, 27, 43-57. https://doi.org/10.1016/0024-4937(91)90019-H
[77]
Duclaux, G., Ménot, R.P., Guillot, S., Agbossoumondé, Y. and Hilairet, N. (2006) The Mafic Layered Complex of the Kabyé Massif (North Togo and North Benin): Evidence of a Pan-African Granulitic Continental Arc Root. Precambrian Research, 151, 101-118. https://doi.org/10.1016/j.precamres.2006.08.012
[78]
Hoepffner, C. (1987) La tectonique hercynienne dans l’Est du Maroc. Thèse, Univ. Louis Pasteur, Louis, 295 p. https://theses.hal.science/tel-01340643
[79]
Lameyre, A., Black, J., Bowder, R. and Giret, P. (1984) Geology of Granites and Their Metallogenetic Relations. Nanjing University, Science Press, Nanjing, 241-253.
[80]
Huppert, H.E. and Sparks, R.S.J. (1988) The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust. Journal of Petrology, 29, 599-624. https://doi.org/10.1093/petrology/29.3.599
[81]
Turner, S., Sandiford, M. and Foden, J. (1992) Some Geodynamic and Compositional Constraints on “Postorogenic” Magmatism. Geology, 20, 931-934. https://doi.org/10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2
[82]
Attoh, B., Hawkins, K., Bowring, D. and Allen, S.A. (1991) U-Pb Zircon Ages of Gneisses from the Pan-African Dahomeyide Orogen, West Africa. Eos Transactions American Geophysical Union, 72, 299.