Investigation of the Behavior of a Photovoltaic Cell under Concentration as a Function of the Temperature of the Base and a Variable External Magnetic Field in 3D Approximation
The photovoltaic (PV) cell
performances are connected to the base photogenerated carriers charge. Some
studies showed that the quantity of the photogenerated carriers charge
increases with the increase of the solar illumination. This situation explains
the choice of concentration PV cell (C?= 50 suns) in this study. However, the strong photogeneration
of the carriers charge causes a high heat production by thermalization,
collision and carriers charge braking due to the electric field induced by
concentration gradient. This heat brings the heating of the PV cell base. That
imposes the taking into account of the temperature influence in the
concentrator PV cell operation. Moreover, with the proliferation of the
magnetic field sources in the life space, it is important to consider its
effect on the PV cell performances. Thus, when magnetic field and base temperature
increase simultaneously, we observe a deterioration of the photovoltage, the
electric power, the space charge region capacity, the fill factor and the
conversion efficiency. However the photocurrent increases when the base
temperature increases and the magnetic field strength decreases. It appears an
inversion phenomenon in the evolution of the electrical parameters as a
function of magnetic field for the values of magnetic field B> 4×10-4 T.
References
[1]
Ouedraogo, A., Mogmenga, L., Bado, N., Ky, T.S.M. and Bathiebo, D.J. (2020) Analysis of the Single-Crystalline Silicon Photovoltaic (PV) Module Performances under Low γ-Radiation from Radioactive Source. Silicon, 12, 1831-1837. https://doi.org/10.1007/s12633-019-00282-7
[2]
Ouédraogo, A., Zouma, B., Ouédraogo, E., Guissou, L. and Bathiébo, D.J. (2021) Individual Efficiencies of a Polycrystalline Silicon PV Cell versus Temperature. Results in Optics, 4, 100101. https://doi.org/10.1016/j.rio.2021.100101
[3]
Green, M.A., Dunlop, E.D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K. and Hao, X.J. (2023) Solar Cell Efficiency Tables (Version 61). Progress in Photovoltaics: Research and Applications, 31, 3-16. https://doi.org/10.1002/pip.3646
[4]
Soro, B., Savadogo, M., Zouma, B., Tchedre, K.E., Sourabié, I., Zerbo, I., Zoungrana, M. and Bathiebo, D.J. (2021) 3-D Modelling of Electrical Parameters’ Effects on the Heating of the Base of an Intense Light Illuminated Polycrystalline Silicon PV Cell. Journal of Fundamental and Applied Sciences, 13, 1380-1388. https://doi.org/10.4314/jfas.v13i3.15
[5]
Soro, B., Zoungrana, M., Zerbo, I., Savadogo, M. and Bathiebo, D.J. (2017) 3-D Modeling of Temperature Effect on a Polycrystalline Silicon Solar Cell under Intense Light Illumination. Smart Grid and Renewable Energy, 8, 291-304. https://doi.org/10.4236/sgre.2017.89019
[6]
Toure, F., Zoungrana, M., Zouma, B., Mbodji, S., Gueye, S., Diao, A. and Sissoko, G. (2012) Influence of Magnetic Field on Electrical Model and Electrical Parameters of a Solar Cell under Intense Multispectral Illumination. International Journal of Advances in Science and Technology, 5, 40-53.
[7]
Soro, B., Savadogo, M., Tiendrebéogo, S., Bathiébo, D.J., Zoungrana, M. and Zerbo, I. (2017) The Effect of Magnetic Field on the Efficiency of the Silicon Solar Cell under an Intense Light Concentration. Advances in Science and Technologie Reseach Journal, 11, 133-138.
[8]
Zoungrana, M., Zerbo, I., Ouédraogo, F., Zouma, B. and Zougmoré, F. (2012) 3D Modelling of Magnetic Field and Light Concentration Effects on a Bifacial Silicon Solar Cell Illuminated by Its Rear Side. IOP Conference Series: Materials Science and Engineering, 29, 012020. https://doi.org/10.1088/1757-899X/29/1/012020
[9]
Barro, F.I., Sam, R., Touré, F., Samb, M.L., Zoungrana, M., Zerbo, I. and Zougmoré, F. (2011) Modélisation à 3-d de l’influence de la taille des grains et de la vitesse de recombinaison aux joints de grain sur une photopile au silicium polycristallin sous éclairement concentrée. Revues des Energies Renouvelables, 14, 649-664.
[10]
Mbodji, S., Gueye, S., Dieng, M., Sissoko, G., Samb, M.L. and Sarr, S. (2009) Etude en modélisation à 3-d d’une photopile au silcium en régime statique sous éclairement multispectral: Détermination des paramètres électriques. Journal of Science, 9, 36-50.
[11]
Sudre, C., Pelanchon, F. and Moreau, Y. (1992) Solar Cell under Intense Light Concentration: Numerical and Analytical Approaches. 11th European Photovoltaic Solar Energy Conférence, Montreux, Suisse, 12-16 October, 1992.
[12]
Betser, Y., Ritter, D., Bahir, G., Cohen, S. and Sperling, J. (1995) Measurement of the Minoritory Carrer Mobility in the Base of Heterojunction Bipolar Transistor Using a Magneto-Transport Method. Applied Physics Letters, 67, 1883-1884. https://doi.org/10.1063/1.114364
[13]
Mathieu, H. (2009) Physique des semi-conducteurs et de quelques composants électroniques. DUNOD, Paris.
[14]
Equer, B. (1993) Energie solaire photovoltaïque: Physique et technologie de la conversion photovoltaïque. CNRS France, Volume 1, Ellipses, Paris.