全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Nano Clay Reinforcement on Thermal Conductivity of Epoxy/CNT Composite Material

DOI: 10.4236/msce.2023.1112001, PP. 1-9

Keywords: Epoxy, Carbon Nanotube, Nano Clay, Thermal Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epoxy is one of the most important polymers preferred in various technological applications thanks to its good mechanical properties and lightness. However, their low thermal conductivity limits their usage areas. Increasing the thermal conductivity of epoxy is an important research topic. One of the most ideal ways to achieve this is to improve the thermal conductivity of epoxy without increasing its weight, thanks to nanoparticles. Carbon nanotubes (CNT) and clays are among the materials used for this purpose. In this study, the thermal conductivities of hybrid polymer composites reinforced separately and together in an epoxy matrix were investigated. The aim of the study is to find out how CNT and nano clay affect the thermal conductivity of the epoxy matrix, separately and together, and reveal the synergistic effect of these nanoparticles.

References

[1]  Srivastava, V.K., Gries, T., Veit, D., Quadflieg, T., Mohr, B. and Kolloch, M. (2017) Effect of Nanomaterial on Mode I and Mode II Interlaminar Fracture Toughness of Woven Carbon Fabric Reinforced Polymer Composites. Engineering Fracture Mechanics, 180, 73-86.
https://doi.org/10.1016/j.engfracmech.2017.05.030
[2]  Liu, L., Yan, F., Li, M., Zhang, M., Xiao, L., Shang, L. and Ao, Y. (2018) Improving Interfacial Properties of Hierarchical Reinforcement Carbon Fibers Modified by Graphene Oxide with Different Bonding Types. Composites Part A: Applied Science and Manufacturing, 107, 616-625.
https://doi.org/10.1016/j.compositesa.2018.02.009
[3]  Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X. and Yu, L. (2012) Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide. ACS Applied Materials & Interfaces, 4, 1543-1552.
https://doi.org/10.1021/am201757v
[4]  Eguílaz, M., Gutiérrez, A., Gutierrez, F., González-Domínguez, J.M., Ansón-Casaos, A., Hernández-Ferrer, J., Ferreyra, N.F., Martínez, M.T. and Rivas, G. (2016) Covalent Functionalization of Single-Walled Carbon Nanotubes with Polytyrosine: Characterization and Analytical Applications for the Sensitive Quantification of Polyphenols. Analytica Chimica Acta, 909, 51-59.
https://doi.org/10.1016/j.aca.2015.12.031
[5]  Wei, H., Xia, J., Zhou, W., Zhou, L., Hussain, G., Li, Q. and Ken, K. (2020) Adhesion and Cohesion of Epoxy-Based Industrial Composite Coatings. Composites Part B, 193, Article ID: 108035.
https://doi.org/10.1016/j.compositesb.2020.108035
[6]  Pielichowska, K. and Nowicka, K. (2019) Analysis of Nanomaterials and Nanocomposites by Thermoanalytical Methods. Thermochimica Acta, 675, 140-163.
https://doi.org/10.1016/j.tca.2019.03.014
[7]  Pielichowska, K. and Nowick, K. (2023) Polymer-Based Nanocomposites as Defence Material. Bulletin of Materials Science, 46, Article No. 79.
https://doi.org/10.1007/s12034-023-02932-4
[8]  Al-Saleh, M.H. (2017) Clay/Carbon Nanotube Hybrid Mixture to Reduce the Electrical Percolation Threshold of Polymer Nanocomposites. Composites Science and Technology, 149, 34-40.
https://doi.org/10.1016/j.compscitech.2017.06.009
[9]  Thakur, A.K., Kumar, P. and Srinivas, J. (2016) Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite. IOP Conference Series: Materials Science and Engineering, 115, Article ID: 012007.
https://doi.org/10.1088/1757-899X/115/1/012007
[10]  Sanusi, O.M., Benelfellah, A. and Hocine, N.A. (2020) Clays and Carbon Nanotubes as Hybrid Nanofillers in Thermoplastic-Based Nanocomposites—A Review. Applied Clay Science, 185, Article ID: 105408.
https://doi.org/10.1016/j.clay.2019.105408
[11]  Liu, L. and Grunlan, J.C. (2007) Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites. Advanced Functional Materials, 17, 2343-2348.
https://doi.org/10.1002/adfm.200600785
[12]  Yang, Z., Choi, D., Kerisit, S., Rosso, K.M., Wang, D., Zhang, J., et al. (2009) Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review. Journal of Power Sources, 192, 588-598.
https://doi.org/10.1016/j.jpowsour.2009.02.038
[13]  Zhang, X., Wen, R., Huang, Z., Tang, C., Huang, Y., Liu, Y., et al. (2017) Enhancement of Thermal Conductivity by the Introduction of Carbon Nanotubes as a Filler in Paraffin/Expanded Perlite Form-Stable Phase-Change Materials. Energy and Buildings, 149, 463-470.
https://doi.org/10.1016/j.enbuild.2017.05.037
[14]  Yu, A., Itkis, M.E., Bekyarova, E. and Haddon, R.C. (2006) Effect of Single-Walled Carbon Nanotube Purity on the Thermal Conductivity of Carbon Nanotube-Based Composites. Applied Physics Letters, 89, Article ID: 133102.
https://doi.org/10.1063/1.2357580
[15]  Martin-Gallego, M., Verdejo, R., Khayet, M., de Zarate, J.M.O., Essalhi, M. and LopezManchado, M.A. (2011) Thermal Conductivity of Carbon Nanotubes and Graphene in Epoxy Nanofluids and Nanocomposites. Nanoscale Research Letters, 6, Article No. 610.
https://doi.org/10.1186/1556-276X-6-610
[16]  Shen, Z., Bateman, S., Wu, D.Y., McMahon, P., Dell’Olio, M. and Gotama, J. (2009) The Effects of Carbon Nanotubes on Mechanical and Thermal Properties of Woven Glass Fibre Reinforced Polyamide-6 Nanocomposites. Composites Science and Technology, 69, 239-244.
https://doi.org/10.1016/j.compscitech.2008.10.017
[17]  Biercuk, M., Llaguno, M., Radosavljevic, M., Hyun, J., Johnson, A. and Fischer, J. (2002) Carbon Nanotube Composites for Thermal Management. Applied Physics Letters, 80, 2767-2769.
https://doi.org/10.1063/1.1469696
[18]  Moisala, A., Li, Q., Kinloch, I.A. and Windle, A.H. (2006) Thermal and Electrical Conductivity of Single- and Multi-Walled Carbon Nanotube-Epoxy Composites. Composites Science and Technology, 66, 1285-1288.
https://doi.org/10.1016/j.compscitech.2005.10.016
[19]  Hashim, A. (2012) Smart Nanoparticles Technology. Intechopen, Rijeka.
https://doi.org/10.5772/1969
[20]  Osswald, T.A. and Menges, G. (1995) Material Science of Polymers for Engineers. Hanser Publishers, Munich.
[21]  Rohsenow, W.M.R. (1998) Handbook of Heat Transfer. McGraw-Hill, New York.
[22]  Sun, L. (2008) Phonon Transport in Confined Structures and at Interfaces. Ph.D. Thesis, Purdue üniversitesi, West Lafayette.
[23]  Han, Z. and Fina, A. (2013) Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Progress in Polymer Science, 36, 914-944.
https://doi.org/10.1016/j.progpolymsci.2010.11.004
[24]  Henry, A. (2014) Thermal Transport in Polymers. Begell House, Danbury.
https://doi.org/10.1615/AnnualRevHeatTransfer.2013006949

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133