|
纳米氧化铈暴露下大型溞MAPK基因家族的表达分析
|
Abstract:
MAPK基因家族广泛参与生物体细胞内的各种生命过程,与生物对环境胁迫的应答相关。然而,在纳米氧化铈(Nano cerium dioxide, nCeO2)暴露下大型溞MAPK基因家族成员的作用机制还不清楚。本文利用BLAST、HMM和SMART等方法在大型溞基因组中鉴定MAPK基因家族成员,分析大型溞各个MAPK基因的理化性质、染色体定位、结构域、保守基序、系统发生关系等,并利用qPCR分析不同浓度、不同时间nCeO2暴露下各个MAPK基因家族成员的表达模式。结果鉴定出14个大型溞的MAPK基因,分布于8条染色体上。MAPK基因家族编码的蛋白质序列长度为361~1546 aa,分子量为38.93~77.02 kDa,等电点在5.3~9.51。12个MAPK蛋白具有S_TKc结构域,4个保守基序。系统发生分析显示,大型溞的14个MAPK基因分别属于4个亚家族,基因序列在进化过程中具有较高的保守性。在50和150 mg/L nCeO2暴露48 h后,大型溞的7个MAPK基因DmMAPK-p38b、DmMAPK4、DmMAP2K4、DmMAP3K4、DmMAP3K7、DmMAP3K11、DmMAP4K5的转录表达水平与对照组相比,极显著上调。结果提示,MAPK基因家族成员与大型溞对nCeO2的胁迫应答调控相关。本研究为评估纳米材料对水生生物的潜在毒性提供科学参考。
The MAPK gene family is widely involved in various life processes in the cells of living organisms and is associated with the response of organisms to environmental stresses. However, the mechanism of MAPK action in Daphnia magna exposed to Nano cerium dioxide (nCeO2) is still unclear. Herein, we used bioinformatics methods such as BLAST, HMM and SMART to identify MAPK gene family members in the Daphnia magna genome, and analyzed the physicochemical properties, chromosomal localization, structural domains, conserved motifs, and phylogenetic relationships of individual MAPK genes in Daphnia magna. The MAPK gene family encodes proteins with sequence lengths of 361~1546 aa, molecular weights of 38.93~77.02 kDa, and isoelectric points in the range of 5.3~9.51. Twelve MAPK proteins have the S_TKc structural domain and four conserved motifs. Phylogenetic analysis showed that the 14 MAPK genes of Daphnia magna belonged to four subfamilies, and the gene sequences were highly conserved during evolution. The expression of seven MAPK genes, DmMAPK-p38b, DmMAPK4, DmMAP2K4, DmMAP3K4, DmMAP3K7, DmMAP3K11, and DmMAP4K5, was highly significantly up-regulated in Daphnia magna compared with the control group after 48 h of exposure to 50 and 150 mg/L nCeO2. The results suggest that members of the MAPK gene family are associated with the stress response of Daphnia magna to nCeO2 exposure. This study provides a scientific reference for assessing the potential toxicity of nanomaterials to aquatic organisms.
[1] | Future Markets, Inc. (2012) The Global Market for Nanomaterials 2002-2016: Production Volumes, Revenues and End User Market Demand. |
[2] | Golbamaki, N., Rasulev, B., Cassano, A., et al. (2015) Genotoxicity of Metal Oxide Nano-materials: Review of Recent Data and Discussion of Possible Mechanisms. Nanoscale, 7, 2154-2198. https://doi.org/10.1039/C4NR06670G |
[3] | 孙晓红. 纳米及介孔金属氧化物材料新合成方法探索研究[D]: [博士学位论文]. 天津: 南开大学, 2010. |
[4] | Magara, G., Elia, A.C., D?rr, A.J.M., et al. (2021) Metal Load and Oxida-tive Stress Driven by Organotin Compounds on Rainbow Trout. Environmental Science and Pollution Research, 28, 35012-35022.
https://doi.org/10.1007/s11356-021-12984-w |
[5] | Wang, Y. and Nowack, B. (2018) Dynamic Probabilistic Mate-rial Flow Analysis of Nano-SiO2, Nano Iron Oxides, Nano-CeO2, Nano-Al2O3, and Quantum Dots in Seven European Regions. Environmental Pollution, 235, 589-601.
https://doi.org/10.1016/j.envpol.2018.01.004 |
[6] | Dai, Y., Sun, C., Hou, R., et al. (2023) Transfer of CeO2 Nano-particles between Freshwater Omnivorous Organisms: Effect of Feces and Necrophagy. Journal of Hazardous Materials, 451, Article ID: 131137.
https://doi.org/10.1016/j.jhazmat.2023.131137 |
[7] | Cassee, F.R., Van Balen, E.C., Singh, C., et al. (2011) Behav-iour of Ceria Nanoparticles in Standardized Test Media—Influence on the Results of Ecotoxicological Tests. Journal of Physics: Conference Series, 304, Article ID: 012058.
https://doi.org/10.1088/1742-6596/304/1/012058 |
[8] | 陈昱, 樊燕, 舒凡, 等. 纳米氧化铈对斑马鱼胚胎早期发育毒性[J]. 中国职业医学, 2020, 47(1): 48-52. |
[9] | Lee, S.W., Kim, S.M. and Choi, J. (2009) Genotoxicity and Eco-toxicity Assays Using the Freshwater Crustacean Daphnia Magna and the Larva of the Aquatic Midge Chironomus ri-parius to Screen the Ecological Risks of Nanoparticle Exposure. Environmental Toxicology and Pharmacology, 28, 86-91. https://doi.org/10.1016/j.etap.2009.03.001 |
[10] | 姜勇, 罗深秋. 细胞信号转导的分子基础与功能调控[M]. 北京: 科学出版社, 2006. |
[11] | Kyriakis, J.M. and Avruch, J. (2001) Mammalian Mitogen-Activated Protein Ki-nase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 81, 807-869.
https://doi.org/10.1152/physrev.2001.81.2.807 |
[12] | Lee, Y., Kim, Y.J., Kim, M.H., et al. (2016) MAPK Cascades in Guard Cell Signal Transduction. Frontiers in Plant Science, 7, Article No. 80. https://doi.org/10.3389/fpls.2016.00080 |
[13] | Damiani, F., Gianguzza, M. and Dolcemascolo, G. (2009) Effects of Tributyltin Chloride in Ascidian Embryos: Modulation of Kinase-Mediated Signalling Pathways. Invertebrate Survival Journal, 6, S87-S94. |
[14] | Chen, J., Shao, B., Wang, J., et al. (2021) Chlorpyrifos Caused Necroptosis via MAPK/NF-κB/TNF-α Pathway in Common Carp (Cyprinus carpio L.) Gills. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 249, Article ID: 109126. https://doi.org/10.1016/j.cbpc.2021.109126 |
[15] | Canesi, L., Ciacci, C., Lorusso, L.C., et al. (2007) Effects of Triclosan on Mytilus galloprovincialis Hemocyte Function and Digestive Gland Enzyme Activities: Possible Modes of Action on Non-Target Organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145, 464-472.
https://doi.org/10.1016/j.cbpc.2007.02.002 |
[16] | Bettencourt, R., Dando, P., Collins, P., et al. (2009) Innate Immun-ity in the Deep Sea Hydrothermal Vent Mussel Bathymodiolus azoricus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152, 278-289. https://doi.org/10.1016/j.cbpa.2008.10.022 |
[17] | Zhang, X., Shen, G., Guo, Y., Zhang, X., et al. (2023) Genome-Wide Identification and Analysis of the MAPKK Gene Family in Chinese Mitten Crab (Eriocheir sinensis) and Its Response to Bacterial Challenge. Fish & Shellfish Immunology, 143, Article ID: 109132. https://doi.org/10.1016/j.fsi.2023.109132 |
[18] | Martins, I.K., Pereira, L.G., Nunes, M.E.M., et al. (2023) Exposure to Mancozeb Results in Increased MAPK Phosphorylation and Locomotor Deficits in Zebrafish Larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 270, Article ID: 109659. https://doi.org/10.1016/j.cbpc.2023.109659 |
[19] | Mohammadi-Sardoo, M., Mandegary, A., Nematollahi-Mahani, S.N., et al. (2021) Cytotoxicity of Mancozeb on Sertoli-Germ Cell Co-Culture System: Role of MAPK Signaling Path-way. Toxicology and Industrial Health, 37, 674-684.
https://doi.org/10.1177/07482337211044028 |
[20] | Park, J., An, G., Park, H., et al. (2023) Developmental Defects Induced by Thiabendazole Are Mediated via Apoptosis, Oxidative Stress and Alteration in PI3K/Akt and MAPK Path-ways in Zebrafish. Environment International, 176, Article ID: 107973. https://doi.org/10.1016/j.envint.2023.107973 |
[21] | Park, J., Hong, T., An, G., et al. (2022) Triadimenol Promotes the Production of Reactive Oxygen Species and Apoptosis with Cardiotoxicity and Developmental Abnormalities in Zebrafish. Science of the Total Environment, 862, Article ID: 160761. https://doi.org/10.1016/j.scitotenv.2022.160761 |
[22] | Forró, L., Korovchinsky, N.M., Kotov, A.A., et al. (2008) Global Diversity of Cladocerans (Cladocera; Crustacea) in Freshwater. Hydrobiologia, 595, 177-184. https://doi.org/10.1007/s10750-007-9013-5 |
[23] | Galdiero, E., Falanga, A., Siciliano, A., et al. (2017) Daphnia Magna and Xenopus laevis as in Vivo Models to Probe Toxicity and Uptake of Quantum Dots Functionalized with gH625. International Journal of Nanomedicine, 12, 2717-2731.
https://doi.org/10.2147/IJN.S127226 |
[24] | Martins, J., Oliva Teles, L. and Vasconcelos, V. (2007) Assays with Daphnia Magna and Danio rerio as Alert Systems in Aquatic Toxicology. Environment International, 33, 414-425. https://doi.org/10.1016/j.envint.2006.12.006 |
[25] | Byeon, E., Kim, M.S., Kim, D.H., et al. (2022) The Freshwater Water Flea Daphnia Magna NIES Strain Genome as a Resource for CRISPR/Cas9 Gene Targeting: The Glutathione S-Transferase Omega 2 Gene. Aquatic Toxicology, 42, Article ID: 106021. https//doi.org/10.1016/j.aquatox.2021.106021 |
[26] | Wang, W., Yang, Y., Yang, L., Luan, T., et al. (2021) Effects of Undissociated SiO2 and TiO2 Nano-Particles on Molting of Daphnia pulex: Comparing with Dissociated ZnO Nano Particles. Ecotoxicology and Environmental Safety, 222, Article ID: 112491. https://doi.org/10.1016/j.ecoenv.2021.112491 |
[27] | Poynton, H.C., Lazorchak, J.M., Impellitteri, C.A., et al. (2013) Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles. Environmental Science & Technology, 46, 6288-6296.
https://doi.org/10.1021/es3001618 |
[28] | Lin, L., Xu, M., Mu, H., et al. (2019) Quantitative Proteomic Analysis to Understand the Mechanisms of Zinc Oxide Nanoparticle Toxicity to Daphnia pulex (Crustacea: Daphniidae): Comparing with Bulk Zinc Oxide and Zinc Salt. Environmental Science and Technology, 53, 5436-5444. https://doi.org/10.1021/acs.est.9b00251 |
[29] | Sudhir, K., Glen, S. and Koichiro, T. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054 |
[30] | Lyu, K., Zhu, X., Wang, Q., et al. (2013) Copper/Zinc Superoxide Dismutase from the Cladoceran Daphnia magna: Molecular Cloning and Expression in Response to Different Acute En-vironmental Stressors. Environmental Science & Technology, 47, 8887-8893. https://doi.org/10.1021/es4015212 |
[31] | Zhang, W., Pu, Z., Du, S., et al. (2016) Fate of Engineered Cerium Oxide Nanoparticles in an Aquatic Environment and Their Toxicity toward 14 Ciliated Protist Species. Environmental Pollution, 212, 584-591.
https://doi.org/10.1016/j.envpol.2016.03.011 |
[32] | Xie, C., Li, X., Hei, L., Chen, Y., et al. (2023) Toxicity of Ceria Nanoparticles to the Regeneration of Freshwater Planarian Dugesia japonica: The Role of Biotransformation. Science of the Total Environment, 857, Article ID: 159590.
https://doi.org/10.1016/j.scitotenv.2022.159590 |
[33] | Xiong, J.Q., Ru, S., Zhang, Q., et al. (2020) Insights into the Effect of Cerium Oxide Nanoparticle on Microalgal Degradation of Sulfonamides. Bioresource Technology, 309, Article ID: 123452.
https://doi.org/10.1016/j.biortech.2020.123452 |
[34] | 郝丽芬, 燕孟娇, 房永雨, 等. 黑胫病菌侵染过程中油菜响应基因的表达分析[J]. 西北植物学报, 2021, 41(2): 197-211. |
[35] | Wang, X., Zhang, C., Zou, N., et al. (2022) Lipocalin-2 Silencing Suppresses Inflammation and Oxidative Stress of Acute Respiratory Distress Syndrome by Fer-roptosis via Inhibition of MAPK/ERK Pathway in Neonatal Mice. Bioengineered, 13, 508-520. https://doi.org/10.1080/21655979.2021.2009970 |
[36] | Gooding, E.L., et al. (2019) Black Gill Increases the Suscep-tibility of White Shrimp, Penaeus setiferus (Linnaeus, 1767), to Common Estuarine Predators. Journal of Experimental Marine Biology and Ecology, 524, Article ID: 151284.
https://doi.org/10.1016/j.jembe.2019.151284 |
[37] | Fan, H.D., et al. (2021) Isolation and Characterization of a MAPKK Gene from Penaeus monodon in Response to Bacterial Infection and Low-Salinity Challenge. Aquaculture Re-ports, 20, Article ID: 100671.
https://doi.org/10.1016/j.aqrep.2021.100671 |
[38] | Hu, Z., Song, H., Feng, J., et al. (2022) Genome-Wide Analysis of the Hard Clam Mitogen-Activated Protein Kinase Kinase Gene Family and Their Transcriptional Profiles under Abiotic Stress. Marine Environmental Research, 176, Article ID: 105606. https://doi.org/10.1016/j.marenvres.2022.105606 |
[39] | Shilo, B.Z. (2014) The Regulation and Functions of MAPK Pathways in Drosophila. Methods, 68, 151-159.
https://doi.org/10.1016/j.ymeth.2014.01.020 |
[40] | 范红第. 斑节对虾MAPK信号通路相关基因的克隆及其在盐度胁迫中的功能研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2020. |
[41] | 马阿妮, 王艺磊, 张子平, 等. MAPK信号途径及其在水生无脊椎动物的研究进展[J]. 生命科学, 2010, 22(10): 978-984. |
[42] | Chang, L. and Ka-rin, M. (2023) Mammalian MAP Kinase Signalling Cascades. Nature, 410, 37-40.
https://doi.org/10.1038/35065000 |
[43] | Anestis, A., Lazou, A., Hans, O., P?rtner, et al. (2007) Behavioral, Meta-bolic, and Molecular Stress Responses of Marine Bivalve Mytilus galloprovincialis during Long-Term Acclimation at In-creasing Ambient Temperature. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiol-ogy, 293, R911-R921.
https://doi.org/10.1152/ajpregu.00124.2007 |
[44] | Kefaloyianni, E., Gourgou, E., Ferle, V., et al. (2005) Acute Thermal Stress and Various Heavy Metals Induce Tissue-Specific Pro- or Anti-Apoptotic Events via the p38-MAPK Signal Transduction Pathway in Mytilus galloprovincialis (Lam). Journal of Experimental Biology, 208, 4427-4436. https://doi.org/10.1242/jeb.01924 |
[45] | Ciacci, C., Canesi, L., Fantinati, A., et al. (2008) Immunotoxicity of Carbon Black Nanoparticles to Blue Mussel Hemocytes. Environment International, 34, 1114-1119. https://doi.org/10.1016/j.envint.2008.04.002 |
[46] | Canesi, L., Ciacci, C., Betti, M., et al. (2003) Effects of PCB Congeners on the Immune Function of Mytilus Hemocytes: Alterations of Tyrosine Kinase-Mediated Cell Signaling. Aquatic Toxicology, 63, 293-306.
https://doi.org/10.1016/S0166-445X(02)00186-8 |
[47] | Wei, S., Huang, Y., Huang, X., et al. (2015) Characteriza-tion of c-Jun from Orange-Spotted Grouper, Epinephelus coioides Involved in SGIV Infection. Fish and Shellfish Im-munology, 43, 230-240.
https://doi.org/10.1016/j.fsi.2014.12.033 |
[48] | Jing, H., Zhang, Q., Li, S., Gao, X.J., et al. (2020) Pb Exposure Triggers MAPK-Dependent Inflammation by Activating Oxidative Stress and miRNA-155 Expression in Carp Head Kidney. Fish and Shellfish Immunology, 106, 219-227.
https://doi.org/10.1016/j.fsi.2020.08.015 |
[49] | Park, S.Y. and Choi, J. (2017) Molecular Characterization and Ex-pression Analysis of P38 MAPK Gene and Protein in Aquatic Midge, Chironomus riparius (Diptera: Chironomidae), Exposed to Environmental Contaminants. Archives of Environmental Contamination and Toxicology, 72, 428-438. https://doi.org/10.1007/s00244-017-0366-0 |
[50] | Liu, M., Ai, W., Sun, L., et al. (2019) Triclosan-Induced Liver Injury in Zebrafish (Danio rerio) via Regulating MAPK/p53 Signaling Pathway. Comparative Biochemistry and Physi-ology Part C: Pharmacology, Toxicology, 222, 108-117.
https://doi.org/10.1016/j.cbpc.2019.04.016 |
[51] | Hu, Q., Wang, H., He, C., et al. (2021) Polystyrene Nanoparticles Trigger the Activation of p38 MAPK and Apoptosis via Inducing Oxidative Stress in Zebrafish and Macrophage Cells. Environmental Pollution, 269, Article ID: 116075.
https://doi.org/10.1016/j.envpol.2020.116075 |