|
Pure Mathematics 2023
𝕊m×?与?m×?中的λ-双调和超曲面
|
Abstract:
本文主要研究乘积空间??m×?与?m×?中的λ-双调和超曲面,给出超曲面是λ-双调和的等价方程,并对半平行λ-双调和超曲面进行分类。
In this paper,we study λ-biharmonic hypersurfaces in product spaces ??m×? and ?m×?,
give the equivalent equation and classify semi-parallel λ-biharmonic hypersurfaces.
[1] | Chen, B.-Y. (1988) Null 2-Type Surfaces in E3 Are Circular Cylinders. Kodai Mathematical
Journal, 11, 295-299. https://doi.org/10.2996/kmj/1138038880 |
[2] | Ferrandez, A. ans Lucas, P. (1991) Null Finite Type Hypersurfaces in Space Forms. Kodai
Mathematical Journal, 14, 406-419. https://doi.org/10.2996/kmj/1138039464 |
[3] | Chen, B.-Y. and Garay, O.J. (2012) δ(2)-Ideal Null 2-Type Hypersurfaces of Euclidean Space Are Spherical Cylindres. Kodai Mathematical Journal, 35, 382-391.
https://doi.org/10.2996/kmj/1341401058 |
[4] | 独力.伪黎曼空间型中满足T2(φ) = nT(φ)的子流形[D]: [博士学位论文].兰州: 西北师范大学,2016. |
[5] | Dillen, F., Fastenakels, J. and Van der Veken, J. (2009) Rotation Hypersurfaces in Sn R and
Hn R. Note di Matematica, 29, 41-54. |
[6] | Van der Veken, J. and Vrancken, L. (2008) Parallel and Semi-Parallel Hypersurfaces of Sn R.
Bulletin of the Brazilian Mathematical Society, 39, 355-370.
https://doi.org/10.1007/s00574-008-0010-8 |
[7] | Calvaruso, G., Kowalczyk, D. and Van der Veken, J. (2010) On Extrinsically Symmetric Hypersurfaces
of Hn R. Bulletin of the Australian Mathematical Society, 82, 390-400.
https://doi.org/10.1017/S0004972710001760 |