全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东北三省能源消费碳排放时空演变特征分析
Analysis on the Spatiotemporal Evolution Characteristics of Energy Consumption and Carbon Emissions in the Three Northeastern Provinces

DOI: 10.12677/AEP.2023.136158, PP. 1310-1317

Keywords: 东北三省,夜间灯光数据,能源消费碳排放,空间自相关
Three Northeastern Provinces
, Night Light Data, Energy Consumption Carbon Emissions, Spatial Autocorrelation

Full-Text   Cite this paper   Add to My Lib

Abstract:

双碳背景下,动态分析碳排放的时空演变特征,对低碳经济的发展具有重要的科学依据和应用价值。基于夜间灯光数据和相关能源数据,以东北三省及其各地级市为研究对象,测算并分析了2003~2020年东北三省能源消费碳排放时空演变特征。结果表明:① 从东北三省2003~2020年能源消费碳排放总量来看,能源消费碳排放总量呈逐年增长趋势,呈现出一种以中心城市为中心、辐射状扩展的态势。② 空间上呈现出东北部、西南部最高,中部最低的分异特征;各地级市碳排放总量存在明显的高值及低值区域。③ 碳排放具有显著的全局空间正相关,形成了以辽宁省的高碳集聚区和以吉林省的低碳集聚区为主的城市集聚态势。总体来看,东北三省能源消费碳排放整体呈现收敛态势,增长速率有所下降,但仍未达到碳峰值。
In the context of dual carbon, dynamic analysis of the spatial and temporal evolution characteristics of carbon emissions has important scientific basis and application value for the development of low-carbon economy. Based on nighttime light data and related energy data, taking the three Northeastern provinces and their prefecture-level cities as the research object, the spatial and temporal evolution characteristics of energy consumption carbon emissions in the three North-eastern provinces from 2003 to 2020 were measured and analyzed. The results show: ① Judging from the total carbon emissions from energy consumption in the three northeastern provinces from 2003 to 2020, the total carbon emissions from energy consumption show an increasing trend year by year, showing a trend of radial expansion centered on central cities. ② Spatially, it shows the differentiation characteristics of being highest in the northeast and southwest and lowest in the central part; There are obvious high and low value areas in the total carbon emissions of pre-fecture-level cities. ③ Carbon emissions have a significant global spatial positive correlation, forming an urban agglomeration trend dominated by high-carbon agglomeration areas in Liaoning Province and low-carbon agglomeration areas in Jilin Province. Overall, the carbon emissions from energy consumption in the three northeastern provinces have shown a trend of convergence, and the growth rate has declined, but has not yet reached the carbon peak.

References

[1]  关伟, 李书妹, 许淑婷. 东北三省碳排放时空演变多尺度分析——基于DMSP/OLS夜间灯光数据[J]. 生态经济, 2022, 38(11): 19-26.
[2]  刘燕华, 葛全胜, 何凡能, 程邦波. 应对国际CO2减排压力的途径及我国减排潜力分析[J]. 地理学报, 2008(7): 675-682.
[3]  张余, 姜博, 赵映慧, 赵毅, 邹铁安, 薛睿. 东北三省土地利用碳排放时空格局及影响因素研究[J]. 地域研究与开发, 2022, 41(4): 150-156.
[4]  王少剑, 苏泳娴, 赵亚博. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J]. 地理学报, 2018, 73(3): 414-428.
[5]  吕倩, 刘海滨. 基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J]. 经济地理, 2020, 40(12): 12-21.
[6]  Elvidge, C.D., Imhoff, M.L., Baugh, K.E., et al. (2001) Night-Time Lights of the World: 1994-1995. Journal of Photogrammetry and Remote Sensing, 56, 81-99.
[7]  Shi, K.F., Yu, B.L., Zhou, Y.Y., et al. (2019) Spatiotemporal Variations of CO2 Emissions and Their Impact Factors in China: A Comparative Analysis between the Provincial and Prefectural Levels. Applied Energy, 233-234, 170-181.
[8]  牛亚文, 赵先超, 胡艺觉. 基于NPP-VIIRS夜间灯光的长株潭地区县域土地利用碳排放空间分异研究[J]. 环境科学学报, 2021, 41(9): 3847-3856.
[9]  苏泳娴, 陈修治, 叶玉瑶, 吴旗韬, 张虹鸥, 黄宁生, 匡耀求. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013, 68(11): 1513-1526.
[10]  刘玉珂, 金声甜. 中部六省能源消费碳排放时空演变特征及影响因素[J]. 经济地理, 2019, 39(1): 182-191.
[11]  赵先超, 彭竞霄, 胡艺觉, 等. 基于夜间灯光数据的湖南省县域碳排放时空格局及影响因素研究[J]. 生态科学, 2022, 41(1): 91-99.
[12]  Zhao, J.C., Chen, Y.L., Ji, G.X., et al. (2018) Residential Carbon Dioxide Emissions at the Urban Scale for County-Level Cities in China: A Comparative Study of Nighttime Light Data. Journal of Cleaner Production, 180, 198-209.
[13]  Chen, Z.Q., Yu, B.L., Yang, C.S., et al. (2021) An Extended Time Series (2000-2018) of Global NPP-VIIRS-Like Nighttime Light Data from a Cross-Sensor Calibration. Earth System Science Data, 13, 889-906.
[14]  苏泳娴. 基于DMSP/OLS夜间灯光数据的中国能源消费碳排放研究[D]: [博士学位论文]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015.
[15]  宋杰鲲. 山东省能源消费碳排放预测[J]. 技术经济, 2012, 31(1): 82-85+94.
[16]  肖亚来. 夜光遥感技术支持下湖南省城市能源消费碳排放研究[D]: [硕士学位论文]. 赣州: 江西理工大学, 2021.
[17]  李云燕, 盛清, 代建. 基于DMSP-OLS与NPP-VIIRS整合数据的京津冀城市群碳排放时空演变特征[J]. 环境工程技术学报, 2023, 13(2): 447-454.
[18]  张青峰, 吴发启, 赵龙山, 卢柳叶, 兰敏. 基于空间分析方法的山西省县域经济空间差异分析[J]. 生态经济(学术版), 2011(1): 18-22.
[19]  林琳, 马飞. 广州市人口老龄化的空间分布及趋势[J]. 地理研究, 2007(5): 1043-1054.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133