全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Leveraging Robust Artificial Intelligence for Mechatronic Product Development—A Literature Review

DOI: 10.4236/ijis.2024.141001, PP. 1-21

Keywords: Artificial Intelligence, Mechatronic Product Development, Knowledge Management, Data Analysis, Optimization, Human Experts, Decision-Making Processes, V-Cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence

References

[1]  Riesener, M., Kuhn, M., Boβmann, C. and Schuh, G. (2023) Methodology for the Design of Interdisciplinary Modules for Mechatronic Modular Product Platforms. Procedia CIRP, 119, 675-680.
https://doi.org/10.1016/j.procir.2023.03.119
[2]  Stankovski, S., Ostojic, G., Zhang, X., Baranovski, I., Tegeltija, S. and Horvat, S. (2019) Mechatronics, Identification Tehnology, Industry 4.0 and Education. 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, 20-22 March 2019, 1-4.
https://doi.org/10.1109/INFOTEH.2019.8717775
[3]  Gerschütz, B., et al. (2023) Digital Engineering Methods in Practical Use during Mechatronic Design Processes. Designs, 7, Article 93.
https://doi.org/10.3390/designs7040093
[4]  Patel, A.R., Ramaiya, K.K., Bhatia, C.V., Shah, H.N. and Bhavsar, S.N. (2021) Artificial Intelligence: Prospect in Mechanical Engineering Field—A Review. In: Kotecha, K., Piuri, V., Shah, H. and Patel, R., Eds., Data Science and Intelligent Applications, Springer, Singapore, 267-282.
https://doi.org/10.1007/978-981-15-4474-3_31
[5]  Liagkou, V., Stylios, C., Pappa, L. and Petunin, A. (2001) Challenges and Opportunities in Industry 4.0 for Mechatronics, Artificial Intelligence and Cybernetics. Electronics, 10, Article 2001.
https://doi.org/10.3390/electronics10162001
[6]  Fradi, M., Gaha, R., Mhenni, F., Mlika, A. and Choley, J.Y. (2022) Knowledge Capitalization in Mechatronic Collaborative Design. Concurrent Engineering, 30, 32-45.
https://doi.org/10.1177/1063293X211050438
[7]  Mouelhi, O., Couturier, P. and Redarce, T. (2009) An Artificial Intelligence Approach for the Multicriteria Optimization in Mechatronic Products Design. 2009 International Conference on Mechatronics and Automation, Changchun, 9-12 August 2009, 1731-1736.
https://doi.org/10.1109/ICMA.2009.5246283
[8]  Gräßler, I., et al. (2021) VDI/VDE 2206: Entwicklung mechatronischer und cyber-physischer Systeme—Inhaltsverzeichnis.
https://www.vdi.de/richtlinien/programme-zu-vdi-richtlinien/vdi-2206
[9]  Hegde, J. and Rokseth, B. (2020) Applications of Machine Learning Methods for Engineering Risk Assessment—A Review. Safety Science, 122, Article ID: 104492.
https://doi.org/10.1016/j.ssci.2019.09.015
[10]  Salehi, H. and Burgueño, R. (2018) Emerging Artificial Intelligence Methods in Structural Engineering. Engineering Structures, 171, 170-189.
https://doi.org/10.1016/j.engstruct.2018.05.084
[11]  Myllynen, S., Suominen, I., Raunio, T., Karell, R. and Lahtinen, J. (2021) Developing and Implementing Artificial Intelligence-Based Classifier for Requirements Engineering. Journal of Nuclear Engineering and Radiation Science, 7, Article ID: 041201.
https://doi.org/10.1115/1.4049722
[12]  Dalpiaz, F. and Niu, N. (2020) Requirements Engineering in the Days of Artificial Intelligence. IEEE Software, 37, 7-10.
https://doi.org/10.1109/MS.2020.2986047
[13]  Nasiri, S., Khosravani, M.R. and Weinberg, K. (2017) Fracture Mechanics and Mechanical Fault Detection by Artificial Intelligence Methods: A Review. Engineering Failure Analysis, 81, 270-293.
https://doi.org/10.1016/j.engfailanal.2017.07.011
[14]  Huang, G., et al. (2021) Machine Learning for Electronic Design Automation: A Survey. ACM Transactions on Design Automation of Electronic Systems, 26, 1-46.
https://doi.org/10.1145/3451179
[15]  Ma, Y., Wang, Z., Yang, H. and Yang, L. (2020) Artificial Intelligence Applications in the Development of Autonomous Vehicles: A Survey. IEEE/CAA Journal of Automatica Sinica, 7, 315-329.
https://doi.org/10.1109/JAS.2020.1003021
[16]  Crowley, J.L., et al. (2023) A Hierarchical Framework for Collaborative Artificial Intelligence. IEEE Pervasive Computing, 22, 9-18.
https://doi.org/10.1109/MPRV.2022.3208321
[17]  Liu, X.Y. (2020) Application and Research of Artificial Intelligence in Mechatronic Engineering. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, 25-27 December 2020, 235-238.
https://doi.org/10.1109/ICMCCE51767.2020.00059
[18]  Ashtari Talkhestani, B., et al. (2019) An Architecture of an Intelligent Digital Twin in a Cyber-Physical Production System. Automatisierungstechnik, 67, 762-782.
https://doi.org/10.1515/auto-2019-0039
[19]  Hopgood, A.A. (2021) Intelligent Systems for Engineers and Scientists: A Practical Guide to Artificial Intelligence. CRC Press, New York.
https://doi.org/10.1201/9781003226277-1
[20]  Subramonyam, H., Seifert, C. and Adar, E. (2021) ProtoAI: Model-Informed Prototyping for AI-Powered Interfaces. 26th International Conference on Intelligent User Interfaces, College Station, 14-17 April 2021, 48-58.
https://doi.org/10.1145/3397481.3450640
[21]  Pimenov, D.Y., Bustillo, A., Wojciechowski, S., Sharma, V.S., Gupta, M.K. and Kuntoğlu, M. (2023) Artificial Intelligence Systems for Tool Condition Monitoring in Machining: Analysis and Critical Review. Journal of Intelligent Manufacturing, 34, 2079-2121.
https://doi.org/10.1007/s10845-022-01923-2
[22]  Collins, G.S. and Moons, K.G.M. (2019) Reporting of Artificial Intelligence Prediction Models. The Lancet, 393, 1577-1579.
https://doi.org/10.1016/S0140-6736(19)30037-6
[23]  Kim, J., Tae, D. and Seok, J. (2020) A Survey of Missing Data Imputation Using Generative Adversarial Networks. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, 19-21 February 2020, 454-456.
https://doi.org/10.1109/ICAIIC48513.2020.9065044
[24]  Williamson, H.F., et al. (2023) Data Management Challenges for Artificial Intelligence in Plant and Agricultural Research. F1000Research, 10, Article 324.
https://doi.org/10.12688/f1000research.52204.2
[25]  Füßl, A., Nissen, V. and Heringklee, S.H. (2023) Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis. International Journal of Semantic Computing, 17, 173-197.
https://doi.org/10.1142/S1793351X23600024
[26]  Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S. and Ebel, P. (2019) The Future of Human-AI Collaboration: A Taxonomy of Design Knowledge for Hybrid Intelligence Systems. Proceedings of the 52nd Hawaii International Conference on System Sciences, Grand Wailea, 8 January 2019.
https://doi.org/10.24251/HICSS.2019.034
[27]  Cautela, C., Mortati, M., Dell’Era, C. and Gastaldi, L. (2019) The Impact of Artificial Intelligence on Design Thinking Practice: Insights from the Ecosystem of Startups. Strategic Design Research Journal, 12, 114-134.
https://doi.org/10.4013/sdrj.2019.121.08
[28]  Xu, Y., Xu, H. and Yao, C. (2022) Application Research of Mechatronics System Based on Computer Artificial Intelligence Technology. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Dalian, 11-12 December 2022, 191-195.
https://doi.org/10.1109/TOCS56154.2022.10015946
[29]  Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T. and He, L. (2022) A Survey of Human-in-the-Loop for Machine Learning. Future Generation Computer Systems, 135, 364-381.
https://doi.org/10.1016/j.future.2022.05.014
[30]  Berriche, A., Mhenni, F., Mlika, A. and Choley, J.Y. (2020) Towards Model Synchronization for Consistency Management of Mechatronic Systems. Applied Sciences, 10, Article 3577.
https://doi.org/10.3390/app10103577
[31]  Hemmer, P., Schellhammer, S., Vössing, M., Jakubik, J. and Satzger, G. (2022) Forming Effective Human-AI Teams: Building Machine Learning Models That Complement the Capabilities of Multiple Experts. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, 23-29 July 2022, 2478-2484.
https://doi.org/10.24963/ijcai.2022/344
[32]  Ebel, H., Ben Hassine, S. and Stark, R. (2023) Knowledge-Based Data Identification for Machine Learning Use Cases. Proceedings of the Design Society, 3, 2395-2404.
https://doi.org/10.1017/pds.2023.240
[33]  Willard, J., Jia, X., Xu, S., Steinbach, M. and Kumar, V. (2023) Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Computing Surveys, 55, 1-37.
https://doi.org/10.1145/3514228
[34]  Tiddi, I. and Schlobach, S. (2022) Knowledge Graphs as Tools for Explainable Machine Learning: A Survey. Artificial Intelligence, 302, Article ID: 103627.
https://doi.org/10.1016/j.artint.2021.103627
[35]  Schneider, P., Schopf, T., Vladika, J., Galkin, M., Simperl, E. and Matthes, F. (2022) A Decade of Knowledge Graphs in Natural Language Processing: A Survey. Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, 20-23 November 2022, 601-614.
https://doi.org/10.48550/arXiv.2210.00105
[36]  Sahlab, N., Kamm, S., Muller, T., Jazdi, N. and Weyrich, M. (2021) Knowledge Graphs as Enhancers of Intelligent Digital Twins. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, 10-12 May 2021, 19-24.
https://doi.org/10.1109/ICPS49255.2021.9468219
[37]  Ismail, A.R., Abidin, N.Z. and Maen, M.K. (2022) Systematic Review on Missing Data Imputation Techniques with Machine Learning Algorithms for Healthcare. Journal of Robotics and Control, 3, 143-152.
https://doi.org/10.18196/jrc.v3i2.13133
[38]  Murti, D.M.P., Pujianto, U., Wibawa, A.P. and Akbar, M.I. (2019) K-Nearest Neighbor (K-NN) Based Missing Data Imputation. 2019 5th International Conference on Science in Information Technology (ICSITech), Yogyakarta, 23-24 October 2019, 83-88.
https://doi.org/10.1109/ICSITech46713.2019.8987530
[39]  Lin, J., Li, N., Alam, M.A. and Ma, Y. (2020) Data-Driven Missing Data Imputation in Cluster Monitoring System Based on Deep Neural Network. Applied Intelligence, 50, 860-877.
https://doi.org/10.1007/s10489-019-01560-y
[40]  Jäger, S., Allhorn, A. and Bießmann, F. (2021) A Benchmark for Data Imputation Methods. Frontiers in Big Data, 4, Article ID: 693674.
https://doi.org/10.3389/fdata.2021.693674
[41]  Gawlikowski, J., et al. (2021) A Survey of Uncertainty in Deep Neural Networks. Artificial Intelligence Review, 56, 1513-1589.
https://doi.org/10.1007/s10462-023-10562-9
https://link.springer.com/article/10.1007/s10462-023-10562-9
[42]  Loquercio, A., Segù, M. and Scaramuzza, D. (2019) A General Framework for Uncertainty Estimation in Deep Learning.
https://arxiv.org/abs/1907.06890
[43]  Hüllermeier, E. and Waegeman, W. (2021) Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods. Machine Learning, 110, 457-506.
https://doi.org/10.1007/s10994-021-05946-3
[44]  Kahlert, M. and Schweiger, W. (2002) Grundlagen Für Einen Mechatronischen Effektkatalog. 93-98.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwivkcPDx4mDAxUm9rsIHUDSBg0QFnoECBMQAQ&url=
https%3A%2F%2Fwww.designsociety.org%2Fpublication%2F27574%2FGrundlagen%2Bf%25C3%25BCr%2Beinen%2Bmechatronischen%2BEffektekatalog&usg=AOvVaw03MgVL3_lfXjGo4cTqzsGE&opi=89978449
[45]  Gumiel, J.á., Mabe, J., Jiménez, J. and Barruetabeña, J. (2022) Introducing the Electronic Knowledge Framework into the Traditional Automotive Suppliers’ Industry: From Mechanical Engineering to Mechatronics. Businesses, 2, 273-289.
https://doi.org/10.3390/businesses2020018
[46]  Zheng, C., Bricogne, M., Le Duigou, J., Hehenberger, P. and Eynard, B. (2018) Knowledge-Based Engineering for Multidisciplinary Systems: Integrated Design Based on Interface Model. Concurrent Engineering, 26, 157-170.
https://doi.org/10.1177/1063293X17734591
[47]  Habib, M.K. (2007) Mechatronics—A Unifying Interdisciplinary and Intelligent Engineering Science Paradigm. IEEE Industrial Electronics Magazine, 1, 12-24.
https://doi.org/10.1109/MIE.2007.901480
[48]  Diehl, H. (2009) Systemorientierte Visualisierung disziplinübergreifender Entwicklungsabhängigkeiten mechatronischer Automobilsysteme. Ph.D. Thesis, Technischen Universität München, München.
https://mediatum.ub.tum.de/673652
[49]  Kopp, M., Hofmann, D., Bertsche, B., Heä, C. and Fritz, O. (2011) Early Reliability Estimation in Automotive Industry. Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design. Copenhagen, 15-18 August 2011, 270-277.
[50]  Mayr, A., Meyer, A., Gonnheimer, P., Gramlich, J., Reiser, M. and Franke, J. (2017) Concept for an Integrated Product and Process Development of Electric Drives Using a Knowledge-Based System. 2017 7th International Electric Drives Production Conference (EDPC), Würzburg, 5-6 December 2017, 1-7.
https://doi.org/10.1109/EDPC.2017.8328157
[51]  Pop, I.G. and Maties, V. (2011) Transdisciplinary Approach of the Mechatronics in the Knowledge Based Society. In: Martinez-Alfaro, H., Ed., Advances in Mechatronics, IntechOpen, London, 271-300.
https://doi.org/10.5772/20876
[52]  Bailey-McEwan, M. (2010) Difficulties of Mechanical Engineering Students in Developing Integrated Knowledge for the Cross-Discipline of Mechatronics: A Conceptual Investigation.
https://wiredspace.wits.ac.za/items/a25b2389-de05-4a4c-8f95-5427c873d6d6
[53]  Xiong, Q. (2021) Overview of the Relationship between Mechatronic Engineering and Artificial Intelligence, 2021 International Conference on Wireless Communications and Smart Grid (ICWCSG), Hangzhou, 13-15 August 2021, 532-535.
https://doi.org/10.1109/ICWCSG53609.2021.00113
[54]  Mcharek, M., Azib, T., Hammadi, M., Choley, J.Y. and Larouci, C. (2018) Knowledge Sharing for Mechatronic Systems Design and Optimization. IFAC-Papers On Line, 51, 1365-1370.
https://doi.org/10.1016/j.ifacol.2018.08.338
[55]  Hofmann, D. (2013) Verknüpfungsmodell zuverlässigkeitsrelevanter Informationen in der Produktentwicklung mechatronischer Systeme. Ph.D. Thesis, Universität Stuttgart, Stuttgart.
https://elib.uni-stuttgart.de/handle/11682/4542
[56]  Sugumaran, V., Xu, Z. and Zhou, H.Y. (2021) Application of Intelligent Systems in Multi-Modal Information Analytics: 2021 International Conference on Multi-Modal Information Analytics (MMIA 2021), Huhehaote, 23-24 April 2021.
https://doi.org/10.1007/978-3-030-74811-1
[57]  Tian, F. and Voskuijl, M. (2015) Mechatronic Design and Optimization Using Knowledge Based Engineering Applied to an Inherently Unstable and Unmanned Aerial Vehicle. IEEE/ASME Transactions on Mechatronics, 21, 542-554.
https://doi.org/10.1109/TMECH.2015.2441832
[58]  Xiang, Y. (2021) Exploration of the Application of Artificial Intelligence Technology in Mechatronics Technology Based on. Journal of Physics: Conference Series, 1915, Article ID: 022059.
https://doi.org/10.1088/1742-6596/1915/2/022059
[59]  Marjanovic, D., Storga, M., Pavkovic, N. and Bojcetic, N. (2010) Requirements Management When Introducing New Mechatronic Sub-Systems—Managing the Knowledge Gaps. Proceedings of 11th International Design Conference—DESIGN 2010, Dubrovnik, 17-20 May 2010, 661-672.
[60]  Götz, Hrsg, K. (2002) Wissensmanagement: Zwischen Wissen und Nichtwissen. 4th Edition, Rainer Hampp Verlag, Augsburg.
https://www.schwarzwild.info/wp-content/uploads/2013/09/0Goetz_Wissensmanagement.pdf
[61]  Chami, M. and Bruel, J.M. (2015) Towards an Integrated Conceptual Design Evaluation of Mechatronic Systems: The SysDICE Approach. Procedia Computer Science, 51, 650-659.
https://doi.org/10.1016/j.procs.2015.05.180
[62]  Breitsprecher, T., Röhner, S. and Wartzack, S. (2010) Konzept für eine simulationsgetriebene wissensbasierte Produktentwicklung im Umfeld mechatronischer Produkte. Proceedings of the 21st Symposium on Design for X, Buchholz/Hamburg, 23-24 September 2010, 223-234.
[63]  Jäger, P. (2007) Zuverlässigkeitsbewertung mechatronischer Systeme in frühen Entwicklungsphasen.
https://elib.uni-stuttgart.de/handle/11682/4122
[64]  Mangal, R. Nori, A.V. and Orso, A. (2019) Robustness of Neural Networks: A Probabilistic and Practical Approach. 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), Montreal, 25-31 May 2019, 93-96.
https://doi.org/10.1109/ICSE-NIER.2019.00032
[65]  Abdar, M., et al. (2021) A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. Information Fusion, 76, 243-297.
https://doi.org/10.1016/j.inffus.2021.05.008
[66]  Guo, K. (2022) Special Issue on Application of Artificial Intelligence in Mechatronics. Applied Sciences, 13, Article 158.
https://doi.org/10.3390/app13010158
[67]  Lila, M.K. (2021) Integration of Artificial Intelligence Techniques in Mechatronic Systems for Smart Manufacturing. Mathematical Statistician and Engineering Applications, 70, 432-439.
https://doi.org/10.17762/msea.v70i1.2494
[68]  Wikander, J., Torngren, M. and Hanson, M. (2001) The Science and Education of Mechatronics Engineering. IEEE Robotics & Automation Magazine, 8, 20-26.
https://doi.org/10.1109/100.932753
[69]  Peres, R.S., Jia, X., Lee, J., Sun, K., Colombo, A.W. and Barata, J. (2020) Industrial Artificial Intelligence in Industry 4.0—Systematic Review, Challenges and Outlook. IEEE Access, 8, 220121-220139.
https://doi.org/10.1109/ACCESS.2020.3042874

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133