全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应用费尔马小定理求解一些同余和不定方程
Using Fermat’s Little Theorem to Solve Some Congruence Equations and Indefinite Equations

DOI: 10.12677/PM.2023.1312356, PP. 3439-3446

Keywords: 费马小定理,同余方程,不定方程,整数解
Fermat’s Little Theorem
, Congruence Equations, Indefinite Equations, Integer Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要利用费尔马小定理研究一些同余方程和不定方程解的问题。根据费尔马小定理证明问题的条件和思想,通过详细的推导得到了一些重要的结论。这些结论主要包括21x18+2y15-x4-3≡0(mod7)和x2+3≡0(mod5)无整数解;不定方程x3-3xy2+y3=2981和15x2-7y2=9无整数解。此外,还利用费尔马小定理考虑了一些多项式问题和五次不定方程x5+y5=z5的解,并给出了其他的一些应用。
In this paper, using Fermat’s little theorem, the solutions of some congruence equations and in-definite equations are mainly studied. Through the idea of Fermat’s small theorem in the proof, some important conclusions are obtained according to the detailed derivation. These conclusions are mainly given. The equations 21x18+2y15-x4-3≡0(mod7) and x2+3≡0(mod5) have not integer solutions. The indefinite equations x3-3xy2+y3=2981 and 15x2-7y2=9 have not inte-ger solutions. In addition, some polynomial problems are also considered. And the solutions of pentadic indefinite equation x5+y5=z5 are investigated by using Fermat’s small theorem. Finally, the others applications of the Fermat’s small theorem are given.

References

[1]  柯召, 孙琦. 数论讲义(上册) [M]. 第2版. 北京: 高等教育出版社, 2009.
[2]  潘承洞, 潘承彪. 简明数论[M]. 北京: 北京大学出版社, 2007.
[3]  柯召, 孙琦. 数论讲义(下册) [M]. 北京: 高等教育出版社, 1990.
[4]  潘承洞, 潘承彪. 初等数论[M]. 第3版. 北京: 北京大学出版社, 2017.
[5]  Edwards, H.M. (2011) Fermat’s Last Theorem: A Genetic introduction to Algebraic Number Theory. Science Press, Beijing.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133