全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

“双碳”目标下我国碳排放影响因素探究
Research on Influencing Factors of China’s Carbon Emission under “Double Carbon” Goal

DOI: 10.12677/SA.2023.126166, PP. 1628-1639

Keywords: 碳排放,面板分位数回归,固定效应模型,随机森林
Carbon Emission
, Panel Quantile Regression, Fixed Effect Model, Random Forest

Full-Text   Cite this paper   Add to My Lib

Abstract:

为早日实现我国的“双碳”目标,了解碳排放量影响因素并提供相应的建议具有重要的现实意义。本文基于《中国统计年鉴》《中国能源统计年鉴》、CEADs数据库以及各省《统计年鉴》中2010~2019年我国30个省份(除西藏自治区外)的面板数据,构建面板分位数回归模型,并与固定效应模型对比探究碳排放量的影响因素,再进一步采用随机森林算法对各变量进行重要性排序。结果表明:总人口、能源结构、能源强度、人均GDP、对外开放度对碳排放量具有显著的正向影响;产业结构对碳排放量的影响在面板分位数回归中较显著,且该影响程度随着分位数的增加逐渐减弱;城镇化率和政策变量仅在分位数为0.3的模型中是显著的,FDI仅在分位数为0.7的模型中是显著的;能源结构、总人口数的重要性最高,其次是对外开放度、FDI、人均GDP、能源强度、产业结构、城镇化率,最后是政策变量。
In order to realize China’s “double carbon” goal as soon as possible, it is of great practical signifi-cance to understand the influencing factors of carbon emission and provide corresponding sugges-tions. Based on the panel data from China Statistical Yearbook, China Energy Statistical Yearbook, CEADs database and provincial Statistical Yearbook of 30 provinces in China (except Tibet Autono-mous Region) from 2010 to 2019, a panel quantile regression model was constructed to explore the influencing factors of carbon emission by comparing with the fixed-effect model. Then the random forest algorithm is used to rank the importance of each variable. The results show that total popula-tion, energy structure, energy intensity, per capita GDP and openness have significant positive ef-fects on carbon emission. The influence of industrial structure on carbon emission is significant in panel quantile regression, and the influence degree decreases with the increase of quantile. Urban-ization rate and policy variables are significant only in the model with a quantile of 0.3, and FDI is significant only in the model corresponding to 0.7. Energy structure and total population are the most important, followed by openness to the outside world, FDI, per capita GDP, energy intensity, industrial structure, urbanization rate, and finally policy variables.

References

[1]  Salman, M., Long, X.L., Dauda, L., Mensah, C.N. and Muhammad, S. (2019) Different Impacts of Export and Import on Car-bon Emissions across 7 ASEAN Countries: A Panel Quantile Regression Approach. Science of the Total Environment, 686, 1019-1029.
https://doi.org/10.1016/j.scitotenv.2019.06.019
[2]  Nguyen, T.T., Pham, T.A.T. and Tram, H.T.X. (2020) Role of Information and Communication Technologies and Innovation in Driving Carbon Emissions and Economic Growth in Selected G-20 Countries. Journal of Environmental Management, 261, Article ID: 110162.
https://doi.org/10.1016/j.jenvman.2020.110162
[3]  Khan, Z., Ali, S., Umar, M., Kirikkaleli, D. and Jiao, Z.L. (2020) Consumption-Based Carbon Emissions and International Trade in G7 Countries: The Role of Environmental Innovation and Renewable Energy. The Science of the Total Environment, 730, Article ID: 138945.
https://doi.org/10.1016/j.scitotenv.2020.138945
[4]  Nguyen, D.K., Huynh, T. and Nasir, M.A. (2021) Carbon Emis-sions Determinants and Forecasting: Evidence from G6 Countries. Journal of Environmental Management, 285, Article ID: 111988.
https://doi.org/10.1016/j.jenvman.2021.111988
[5]  王勇, 许子易, 张亚新. 中国超大城市碳排放达峰的影响因素及组合情景预测——基于门限-STIRPAT模型的研究[J]. 环境科学学报, 2019, 39(12): 4284-4292.
[6]  唐赛, 付杰文, 武俊丽. 中国典型城市碳排放影响因素分析[J]. 统计与决策, 2021, 37(23): 59-63.
[7]  王兆峰, 李竹, 吴卫. 长江经济带不同等级城市碳排放的时空演变及其影响因素[J]. 环境科学研究, 2022, 35(10): 2273-2281
[8]  杜海波, 魏伟, 张学渊, 纪学朋. 黄河流域能源消费碳排放时空格局演变及影响因素——基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J]. 地理研究, 2021, 40(7): 2051-2065.
[9]  周一凡, 李彬, 张润清. 县域尺度下河北省农业碳排放时空演变与影响因素研究[J]. 中国生态农业学报(中英文), 2022, 30(4): 570-581.
[10]  潘喜莲, 侯宇恒. 影响我国碳排放的因素分解——基于省级面板数据的实证分析[J]. 科学决策, 2021(12): 84-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133