One of the most devastating diseases of rice worldwide is bacterial
blight (BLB) caused by Xanthomonasoryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild
rice Oryzaelongistaminata. So far, no study has been done on Beninese Xoo
strains. We do not know whether the pathogen has already passed into the rice
varieties grown, or if they are exposed to other bacteria. Whereas the use of
resistant varieties, carrying resistance genes, is the only highly effective
and environmentally friendly way to control this disease, no information is
available on these Xoo resistance genes in rice varieties grown in Benin apart
from the one we recently. This study aims to identify Beninese Xoo strains, causing
BLB and screen rice varieties grown in Benin for the main resistance genes.
Diseased rice leaves showing typical symptoms of fire blight collected from
different rice fields in the three phytogeographic areas of Benin were analyzed
by PCR for Xoo-specific sequence identification.
Furthermore, seventy-five collected rice accessions were screened to identify
xa5, Xa7, xa13, and Xa21 resistance genes to Xoo. The results reveal that Xanthomonasoryzae was
identified in two fields in Banikouara and one in Malanville. On the other
hand, Sphingomonas sp. has been
identified in several other rice fields in Benin. Forty-seven of seventy-five
rice accessions examined (62.66%) carried Xoo resistance genes with 3 (4%) and
40 (53.33%) of xa5 and Xa21 respectively. None of the accessions had either Xa7
or xa13 resistance genes. Three accessions possess both xa5 and Xa21 genes.
Isogenic lines IRBB60 and IRBB21, supposed to
be a positive control, presented a Xoo sensitivity allele. These results
indicate that Xoo has moved from the wild rice variety to the cultivated variety
in northern Benin and varietal improvement programs must be implemented with
varieties having several resistance genes for the efficient response against a
possible BLB pandemic in Benin.
References
[1]
Mew, T.W., Alvarez, A.M., Leach, J.E. and Swings, J. (1993) Focus on Bacterial Blight of Rice. Plant Disease, 77, 5-12. https://doi.org/10.1094/PD-77-0005
[2]
Sere, Y., Onasanya, A., Verdier, V., Akator, K., Ouedraogo, L.S., Segda, Z., Mbare, M.M., Sido, A.Y. and Baso, A. (2005) Rice Bacterial Leaf Blight in West Africa: Preliminary Studies on Disease in Farmer’s Field and Screening. Asian Journal of Plant Sciences, 4, 577-579. https://doi.org/10.3923/ajps.2005.577.579
[3]
Gonzalez, C., Szurek, B., Manceau, C., Mathieu, T., Séré, Y. and Verdier, V. (2007) Molecular and Pathotypic Characterization of New Xanthomonas oryzae Strains from West Africa. Molecular Plant-Microbe Interactions, 20, 534-546.
https://doi.org/10.1094/MPMI-20-5-0534
[4]
Willocquet, L., Elazegui, F.A., Castilla, N., Fernandez, L., Fischer, K.S., Peng, S.B., Teng, P.S., Srivastava, R.K., Singh, H.M., Zhu, D.F. and Savary, S. (2004) Research Priorities for Rice Pest Management in Tropical Asia: A Simulation Analysis of Yield Losses and Management Efficiencies. Phytopathology, 94, 672-682.
https://doi.org/10.1094/PHYTO.2004.94.7.672
[5]
FAO (2020). https://www.fao.org.com
[6]
Pandey, M.K., Shobha, R.N., Sundaram, R., Laha, G., Madhav, M., Srinivasa, R.K., Sudharshan, I., Hari, Y., Varaprasad, G. and Subba, R.L. (2013) Improvement of Two Traditional Basmati Rice Varieties for Bacterial Blight Resistance and Plant Stature through Morphological and Marker-Assisted Selection. Molecular Breeding, 31, 239-246. https://doi.org/10.1007/s11032-012-9779-7
[7]
Afolabi, O., Amoussa, R., Bilé, M., Oludare, A., Gbogbo, V., Poulin, L., Koebnik, R., Szurek, B. and Silué, D. (2016) First Report of Bacterial Leaf Blight of Rice Caused by Xanthomonas oryzae pv. oryzae in Benin. Plant Disease, 10, 515.
https://doi.org/10.1094/PDIS-07-15-0821-PDN
[8]
Islam, Md.R., Alam, Md.S., Khan, A.I., Hossain, I., Adam, L.R. and Daayf, F. (2016) Analyses of Genetic Diversity of Bacterial Blight Pathogen, Xanthomonas oryzae pv. oryzae Using IS1112 in Bangladesh. Comptes Rendus Biologies, 339, 399-407.
https://doi.org/10.1016/j.crvi.2016.06.002
[9]
Mundt, C.C. (2014) Durable Resistance: A Key to Sustainable Management of Pathogens and Pests. Infection, Genetics and Evolution, 27, 446-455.
https://doi.org/10.1016/j.meegid.2014.01.011
[10]
Verdier, V. (2020) Characterization of New Races of Xanthomonas oryzae pv. oryzae in Mali Informs Resistance Gene Deployment. Phytopathology, 110, 267-277.
https://doi.org/10.1094/PHYTO-02-19-0070-R
[11]
Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., Yang, F., Chu, Z., Wang, G.L., White, F.F. and Yin, Z.R. (2005) Gene Expression Induced by a Type-III Effector Triggers Disease Resistance in Rice. Nature, 435, 1122-1125.
https://doi.org/10.1038/nature03630
[12]
Chu, Z., Fu, B., Yang, H., Xu, C., Li, Z. and Sanchez, A. (2006) Targeting xa13, a Recessive Gene for Bacterial Blight Resistance in Rice. Theoretical and Applied Genetics, 12, 455-461. https://doi.org/10.1007/s00122-005-0145-6
[13]
Mohiuddin, M.S., Rao, Y.P., Mohan, S.K. and Verma, J.P. (1976) Role of Leptocorisa acuta Thun in the Spread of Bacterial Blight of Rice. Current Science, 45, 426-427.
[14]
Furuya, N., Taura, S., Goto, T., Thuy, B.T., Ton, P.H., Tsuchiya, K. and Yoshimura, A. (2012) Diversity in Virulence of Xanthomonas oryzae pv. oryzae from Northern Vietnam. Japan Agricultural Research Quarterly, 46, 329-338.
https://doi.org/10.6090/jarq.46.329
[15]
Petpisit, V., Khush, G.S. and Kauffman, H.E. (1977) Inheritance of Resistance to Bacterial-Blight in Rice. Crop Science, 17, 551-554.
https://doi.org/10.2135/cropsci1977.0011183X001700040018x
[16]
Blair, M.W., Garris, A.J., Iyer, A.S., Chapman, B., Kresovich, S. and McCouch, S.R. (2003) High-Resolution Genetic Mapping and Candidate Gene Identification at the xa5 Locus for 44 Bacterial Blight Resistance in Rice (Oryza sativa L.). Theoretical and Applied Genetics, 107, 62-73. https://doi.org/10.1007/s00122-003-1231-2
[17]
Jiang, G.H., Xia, Z.H., Zhou, Y.L., Wan, J., Li, D.Y., Chen, R.S., Zhai, W.X. and Zhu, L.H. (2006) Testifying the Rice Bacterial Blight Resistance Gene xa5 by Genetic Complementation and Further Analyzing xa5 (Xa5) in Comparison with Its Homolog TFIIAγ1. Molecular Genetics and Genomics, 275, 354-366.
https://doi.org/10.1007/s00438-005-0091-7
[18]
Chen, X., Liu, P., Mei, L., He, X., Chen, L., Liu, H., Shen, S., Ji, Z., Zheng, X. and Zhang, Y. (2021) Xa7, a New Executor R Gene That Confers Durable and Broad-Spectrum Resistance to Bacterial Blight Disease in Rice. Plant Communications, 2, Article ID: 100143. https://doi.org/10.1016/j.xplc.2021.100143
[19]
Dossa, G.S., Quibod, I., Atienza-Grande, G., Oliva, R., Maiss, E., Vera Cruz, C. and Wydra, K. (2020) Rice Pyramided Line IRBB67 (Xa4/Xa7) Homeostasis under Combined Stress of High Temperature and Bacterial Blight. Scientific Reports, 10, Article No. 683. https://doi.org/10.1038/s41598-020-57499-5
[20]
Khan, M.A., Naeem, M. and Iqbal, M. (2014) Breeding Approaches for Bacterial Leaf Blight Resistance in Rice (Oryza sativa L.), Current Status and Future Directions. European Journal of Plant Pathology, 139, 27-37.
https://doi.org/10.1007/s10658-014-0377-x
[21]
Vikal, Y. and Bhatia, D. (2017) Genetics and Genomics of Bacterial Blight Resistance in Rice. Advances in International Rice Research, 10, 175-213.
https://doi.org/10.5772/67361
[22]
Moumouni, B. (2007) Le flétrissement bactérien du riz au Niger: Diversité pathologique d’isolats collectés sur les périmètres irrigués. Journal of Applied Biosciences, 38, 2551-2563.
[23]
Priya, L.B., Ujjal, K.N., Sharmistha, G., Gayatri, G., Shalim, U., Omar, M.A., Arafat, A.H., Alison, M.L., Yong-Ming, G. and Akbar, H. (2021) Introgression of Bacterial Blight Resistance Genes in the Rice Cultivar Ciherang: Response against Xan-thomonas oryzae pv. oryzae in the F6 Generation. Plants, 10, Article No. 2048.
https://doi.org/10.3390/plants10102048
[24]
Djèdatin, G., Nanoukon, C., Missihoun, A., Lomou, M., Sedah, P. and Agbangla, C. (2022) Molecular Identification of Xa4 Resistance Gene to Xanthomonas oryzae pv. oryzae in Cultivated Rice in Northwest Benin. Journal of Agricultural and Horticultural Research, 15, 11-22. https://doi.org/10.9734/arja/2022/v15i430162
[25]
Lang, J.M., Hamilton, J.P., Diaz, M.G.Q., Van Sluys, M.A.M., Burgos, R.G., Vera Cruz, C.M., Buell, Tisserat, C.R. and Leach, N.A. (2010) Genomics-Based Diagnostic Marker Development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Disease, 94, 311-319. https://doi.org/10.1094/PDIS-94-3-0311
[26]
Kini, K., Agnimonhan, R., Dossa, R., Soglonou, B., Gbogbo, V., Ouedraogo, I., Kpemoua, K., Traoré, M. and Silue, D. (2017) First Report of Sphingomonas sp. Causing Bacterial Leaf Blight of Rice in Benin, Burkina Faso, the Gambia, Ivory Coast, Mali, Nigeria, Tanzania and Togo. New Disease Reports. 35, 32.
https://doi.org/10.5197/j.2044-0588.2017.035.032
[27]
Fanou, A.A., Missihoun, A.A., Sovegnon, P., Behoundja-Kotoko, O., Baimey, H. and Agbangla, C. (2019) Molecular Genetic Identification of Viruses Affecting Pepper Crop (Capsicum spp.) in Western North of Benin. International Journal of Current Research, 6, 9-14. https://doi.org/10.20546/ijcrbp.2019.603.002
[28]
Chen, X., Temnykh, S., Xu, Y., Cho, Y. and McCouch, S. (2017) Development of a Microsatellite Framework Map Providing Genome-Wide Coverage in Rice (Oryza sativa L.). Theoretical and Applied Genetics, 95, 553-567.
https://doi.org/10.1007/s001220050596
[29]
Porter, B., Chittoor, J., Yano, M., Sasaki, T. and White, F. (2023) Development and Mapping of Markers Linked to the Rice Bacterial Blight Resistance Gene Xa7. Crop Science, 43, 1484-1492. https://doi.org/10.2135/cropsci2003.1484
[30]
Hajira, S.K., Sundaram, R.M., Laha, G.S., Yugander, A., Balachandran, S.M., Viraktamath, B.C., Sujatha, K., Balachi-ranjeevi, C.H., Pranathi, K. and Anila, M. (2016) A Single-Tube, Functional Marker-Based Multiplex PCR Assay for Simultaneous Detection of Major Bacterial Blight Resistance Genes Xa21, xa13 and xa5 in Rice. Rice Science, 23, 144-151. https://doi.org/10.1016/j.rsci.2015.11.004
[31]
Luo, Y.-C., Wang, S.-H., Li, C.-Q., et al. (2004) Improvement of Resistance to Bacterial Blight by Marker-Assisted Selection in a Wide Compatibility Restorer Line of Hybrid Rice. Rice Science, 11, 231.
[32]
Midha, S., Bansal, K., Sharma, S., Kumar, N., Patil, N.P., Chaudhry, V. and Patil, P.B. (2016) Genomic Resource of Rice Seed Associated Bacteria. Frontiers in Microbiology, 6, Article No. 1551. https://doi.org/10.3389/fmicb.2015.01551
[33]
Ullah, I., Jamil, S., Iqbal, M., Shaheen, H., Hasni, S., Jabeen, S., Mehmood, A. and Akhter, M. (2012) Detection of Bacterial Blight Resistance Genes in Basmati Rice Landraces. Genetics and Molecular Research, 11, 1960-1966.
https://doi.org/10.4238/2012.July.20.1
[34]
Sabar, M., Bibi, T., Farooq, H.U., Haider, Z., Naseem, I., Mahmood, A. and Akhter, M. (2016) Molecular Screening of Rice (Oryza sativa L.) Germplasm for Xa4, xa5 and Xa21 Bacterial Leaf Blight (BLB) Resistant Genes Using Linked Marker Approach. African Journal of Biotechnology, 15, 2317-2324.
https://doi.org/10.5897/AJB2016.15612
[35]
Kamhun, W., Phengam, S., Uppananchai, T., Ratanasut, K. and Rungrat, T. (2022) Effects of Nitrogen Levels on Sucrose Content, Disease Severity of Xanthomonas oryzae pv. oryzae and Yield of Hybrid Rice (BC4F5). Journal of Agriculture and Natural Resources, 56, 909-916. https://doi.org/10.34044/j.anres.2022.56.5.05
[36]
Dossa, G.S., Oliva, R., Maiss, E., Vera Cruz, C. and Wydra, K. (2016) High Temperature Enhances the Resistance of Cultivated African Rice, Oryza glaberrima, to Bacterial Blight. Plant Disease, 100, 380-387.
https://doi.org/10.1094/PDIS-05-15-0536-RE
[37]
Suh, J.P., Jeung, J.U., Noh, T.H., Cho, Y.C., Park, S.H., Park, H.S., Shin, M.S., Kim, C.K. and Jena, K.K. (2013) Development of Breeding Lines with Three Pyramided Resistance Genes That Confer Broad-Spectrum Bacterial Blight Resistance and Their Molecular Analysis in Rice. Rice, 6, Article No. 5.
https://doi.org/10.1186/1939-8433-6-5
[38]
Chirinos, J., Olivares, B. and Guevara, E. (2013) Biological Effectiveness of Plant Extracts in in Vitro Control of the Phytopathogenic Xanthomonas Bacterium. Multiciencias, 13, 115-121. https://www.redalyc.org/pdf/904/90428841002.pdf
[39]
Paredes-Trejo, F., Campos, B., Movil Fuentes, Y., Arevalo-Groening, J. and Gil, A. (2023) Assessing the Spatiotemporal Patterns and Impacts of Droughts in the Orinoco River Basin Using Earth Observations Data and Surface Observations. Hydrology, 10, Article No. 195. https://doi.org/10.3390/hydrology10100195
[40]
Rodríguez-Yzquierdo, G., Olivares, O., Silva-Escobar, O., González-Ulloa, A., Soto-Suarez, M. and Betancourt-Vásquez, M. (2023) Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4. Horticulturae, 9, Article No. 757.
https://doi.org/10.3390/horticulturae9070757
[41]
Vega, A., Orlando, O., Rueda Calderón, M.A., Montenegro-Gracia, E., Araya-Almán, M. and Marys, E. (2022) Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest. Sustainability, 14, Article No. 14123. https://doi.org/10.3390/su142114123
[42]
Olivares, B.O., Vega, A., Calderón, M.A.R., Rey, J.C., Lobo, D., Gómez, J.A. and Landa, B.B. (2022) Identification of Soil Properties Associated with the Incidence of Banana Wilt Using Supervised Methods. Plants, 11, Article No. 2070.
https://doi.org/10.3390/plants11152070
[43]
Ronald, P.C., Albano, B., Tabien, R., Abenes, L., Wu, K., McCouch, S. and Tanksley, S.D. (1992) Genetic and Physical Analysis of the Rice Bacterial Blight Disease Resistance Locus, Xa21. Molecular Genetics and Genomics, 236, 113-120.
https://doi.org/10.1007/BF00279649
[44]
Ramalingam, J., Raveendra, C., Savitha, P., Vidya, V., Chaithra, T.L., Velprabakaran, S., Saraswathi, R., Ramanathan, A., Arumugam Pillai, M.P. and Arumugachamy, S. (2020) Gene Pyramiding for Achieving Enhanced Resistance to Bacterial Blight, Blast, and Sheath Blight Diseases in Rice. Frontiers in Plant Science, 11, Article ID: 591457. https://doi.org/10.3389/fpls.2020.591457
[45]
Krishnakumar, R. and Kumaravadivel, N. (2018) Marker-Assisted Selection for Biotic Stress (Bacterial Leaf Blight and Gall Midge) Tolerance in Bc4F4 Generation of Rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 9, 275-282.
https://doi.org/10.5958/0975-928X.2018.00032.7