全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海藻活性物质在医药中的潜在应用
Potential Applications of Algae Bioactives in Medicine

DOI: 10.12677/JOCR.2023.114020, PP. 203-218

Keywords: 海藻,活性分子,生物活性
Algae
, Active Molecules, Bioactivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

海藻富含多糖、蛋白质、脂肪酸、维生素和矿物质等活性物质,具有抗氧化、抗炎、免疫调节、抗凝血、抗肿瘤等多种生物活性,可以用于治疗多种疾病。通过了解海藻的主要生物活性物质及其生物活性研究进展,本文总结了海藻主要活性物质的组成、生物活性和作用机理,为进一步开发和研究海洋资源提供参考。
Algae are rich in bioactive substances such as polysaccharides, proteins, fatty acids, vitamins, and minerals, among other active substances. They have various bioactivities such as antioxidant, anti-inflammatory, immunomodulatory, anticoagulant, and anti-tumor effects, which can be used to treat various diseases. By understanding the main bioactive substances of algae and the progress of their bioactivity research, this paper summarizes the composition, bioactivity, and mechanism of action of the main bioactive substances of algae, providing a reference for further development and research of marine resources.

References

[1]  Xie, C., Lee, Z.J., Ye, S., et al. (2023) A Review on Seaweeds and Seaweed-Derived Polysaccharides: Nutrition, Chemistry, Bioactivities, and Applications. Food Reviews International, 2023, 1-36.
https://doi.org/10.1080/87559129.2023.2212055
[2]  Guiry, M.D.G. and AlgaeBase, G.M. (2023) World-Wide Electronic Publication. National University of Ireland, Galway.
https://www.algaebase.org/
[3]  Lewis, L.A. and Mccourt, R.M. (2004) Green Algae and the Origin of Land Plants. American Journal of Botany, 91, 1535-1556.
https://doi.org/10.3732/ajb.91.10.1535
[4]  Aziz, E., Batool, R., Khan, M.U., et al. (2021) An Overview on Red Algae Bioactive Compounds and Their Pharmaceutical Applications. Journal of Complementary and Integrative Medicine, 17, Article ID: 20190203.
https://doi.org/10.1515/jcim-2019-0203
[5]  Bringloe, T.T., Starko, S., Wade, R.M., et al. (2020) Phylogeny and Evolution of the Brown Algae. Critical Reviews in Plant Sciences, 39, 281-321.
https://doi.org/10.1080/07352689.2020.1787679
[6]  秦益民. 海藻活性物质在功能食品中的应用[J]. 食品科学技术学报, 2019, 37(4): 18-23.
[7]  Gutierrez-Rodriguez, A.G., Juarez-Portilla, C., Olivares-Banuelos, T. and Zepeda, R.C. (2018) Anticancer Activity of Seaweeds. Drug Discovery Today, 23, 434-447.
https://doi.org/10.1016/j.drudis.2017.10.019
[8]  Shi, Q., Wang, A., Lu, Z., et al. (2017) Overview on the Antiviral Activities and Mechanisms of Marine Polysaccharides from Seaweeds. Carbohydrate Research, 453-454, 1-9.
https://doi.org/10.1016/j.carres.2017.10.020
[9]  Jacobsen, C., Sorensen, A.M., Holdt, S.L., Akoh, C.C. and Hermund, D.B. (2019) Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annual Review of Food Science and Technology, 10, 541-568.
https://doi.org/10.1146/annurev-food-032818-121401
[10]  Perez, M.J., Falque, E. and Dominguez, H. (2016) Antimicrobial Action of Compounds from Marine Seaweed. Marine Drugs, 14, Article 52.
https://doi.org/10.3390/md14030052
[11]  Khotimchenko, M., Tiasto, V., Kalitnik, A., et al. (2020) Antitumor Potential of Carrageenans from Marine Red Algae. Carbohydrate Polymers, 246, Article ID: 116568.
https://doi.org/10.1016/j.carbpol.2020.116568
[12]  Sanjeewa, K.K.A., Lee, J.S., Kim, W.S. and Jeo, Y.J. (2017) The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydrate Polymers, 177, 451-459.
https://doi.org/10.1016/j.carbpol.2017.09.005
[13]  Liu, Z. and Sun, X. (2020) A Critical Review of the Abilities, Determinants, and Possible Molecular Mechanisms of Seaweed Polysaccharides Antioxidants. International Journal of Molecular Sciences, 21, Article 7774.
https://doi.org/10.3390/ijms21207774
[14]  Hans, N., Malik, A. and Naik, S. (2021) Antiviral Activity of Sulfated Polysaccharides from Marine Algae and Its Application in Combating COVID-19: Mini Review. Bioresource Technology Reports, 13, Article ID: 100623.
https://doi.org/10.1016/j.biteb.2020.100623
[15]  Ueno, M., Nogawa, M., Siddiqui, R., et al. (2019) Acidic Polysaccharides Isolated from Marine Algae Inhibit the Early Step of Viral Infection. International Journal of Biological Macromolecules, 124, 282-290.
https://doi.org/10.1016/j.ijbiomac.2018.11.152
[16]  Kaz?owski, B., Chiu, Y.H., Kaz?owska, K., Pan, C.L. and Wu, C.J. (2012) Prevention of Japanese Encephalitis Virus Infections by Low-Degree-Polymerisation Sulfated Saccharides from Gracilaria sp. and Monostroma nitidum. Food Chemistry, 133, 866-874.
https://doi.org/10.1016/j.foodchem.2012.01.106
[17]  Buck, C.B., Thompson, C.D., Roberts, J.N., et al. (2006) Carrageenan Is a Potent Inhibitor of Papillomavirus Infection. PLOS Pathogens, 2, e69.
https://doi.org/10.1371/journal.ppat.0020069
[18]  Farias, W.R., Valente, A.P., Pereira, M.S. and Moura?o, P.A.S. (2000) Structure and Anticoagulant Activity of Sulfated Galactans. Isolation of a Unique Sulfated Galactan from the Red Algae Botryocladia occidentalis and Comparison of Its Anticoagulant Action with That of Sulfated Galactans from Invertebrates. Journal of Biological Chemistry, 275, 29299-29307.
https://doi.org/10.1074/jbc.M002422200
[19]  Sharma, P.P. and Baskaran, V. (2021) Polysaccharide (Laminaran and Fucoidan), Fucoxanthin and Lipids as Functional Components from Brown Algae (Padina tetrastromatica) Modulates Adipogenesis and Thermogenesis in Diet-Induced Obesity in C57BL6 Mice. Algal Research, 54, Article ID: 102187.
https://doi.org/10.1016/j.algal.2021.102187
[20]  Kim, K., Ehrlich, A., Perng, V., et al. (2019) Algae-Derived β-Glucan Enhanced Gut Health and Immune Responses of Weaned Pigs Experimentally Infected with a Pathogenic E. Coli. Animal Feed Science and Technology, 248, 114-125.
https://doi.org/10.1016/j.anifeedsci.2018.12.004
[21]  Wang, S.H., Huang, C.Y., Chen, C.Y., et al. (2021) Isolation and Purification of Brown Algae Fucoidan from Sargassum siliquosum and the Analysis of Anti-Lipogenesis Activity. Biochemical Engineering Journal, 165, Article ID: 107798.
https://doi.org/10.1016/j.bej.2020.107798
[22]  Matsuhashi, T. (1990) Agar. In: Harris, P., Ed., Food Gels, Springer, Dordrecht, 1-51.
https://doi.org/10.1007/978-94-009-0755-3_1
[23]  Bhatnagar, M. and Bhatnagar, A. (2015) Wound Dressings from Algal Polymers. In: Kim, S.K. and Chojnacka, K., Eds., Marine Algae Extracts: Processes, Products, and Applications, Wiley, New York, 523-556.
https://doi.org/10.1002/9783527679577.ch31
[24]  Zhao, J., Sun, C., Li, H., Dong, X. and Zhang, X.D. (2020) Studies on the Physicochemical Properties, Gelling Behavior and Drug Release Performance of Agar/κ-Carrageenan Mixed Hydrogels. International Journal of Biological Macromolecules, 154, 878-887.
https://doi.org/10.1016/j.ijbiomac.2020.03.087
[25]  Chu, B., Zhang, A., Huang, J., et al. (2020) Preparation and Biological Evaluation of a Novel Agarose-Grafting-Hyaluronan Scaffold for Accelerated Wound Regeneration. Biomedical Materials, 15, Article ID: 045009.
https://doi.org/10.1088/1748-605X/ab7b3e
[26]  Szekalska, M., Puci?owska, A., Szymańska, E., et al. (2016) Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. International Journal of Polymer Science, 2016, Article ID: 7697031.
https://doi.org/10.1155/2016/7697031
[27]  Murata, Y., Sasaki, N., Miyamoto, E. and Kawashima, S. (2000) Use of Floating Alginate Gel Beads for Stomach-Specific Drug Delivery. European Journal of Pharmaceutics and Biopharmaceutics, 50, 221-226.
https://doi.org/10.1016/S0939-6411(00)00110-7
[28]  Clark, R.A. (1996) Wound Repair: Overview and General Considerations. In: Clark, R.A.F., Ed., The Molecular and Cellular Biology of Wound Repair, Springer, Boston, 3-50.
https://doi.org/10.1007/978-1-4899-0185-9_1
[29]  Davey, R.B., Sparnon, A. and Byard, R.W. (2000) Unusual Donor Site Reactions to Calcium Alginate Dressings. Burns, 26, 393-398.
https://doi.org/10.1016/S0305-4179(99)00140-0
[30]  Otterlei, M., Sundan, A., Skj?k-Br?k, G., et al. (1993) Similar Mechanisms of Action of Defined Polysaccharides and Lipopolysaccharides: Characterization of Binding and Tumor Necrosis Factor α Induction. Infection and Immunity, 61, 1917-1925.
https://doi.org/10.1128/iai.61.5.1917-1925.1993
[31]  Sun, J. and Tan, H. (2013) Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials, 6, 1285-1309.
https://doi.org/10.3390/ma6041285
[32]  Mukhopadhyay, P., Maity, S., Mandal, S., et al. (2018) Preparation, Characterization and in vivo Evaluation of pH Sensitive, Safe Quercetin-Succinylated Chitosan-Alginate Core-Shell-Corona Nanoparticle for Diabetes Treatment. Carbohydrate Polymers, 182, 42-51.
https://doi.org/10.1016/j.carbpol.2017.10.098
[33]  Lin, S.C., Wang, Y., Wertheim, D.F. and Coombes, A.G.A. (2017) Production and in vitro Evaluation of Macroporous, Cell-Encapsulating Alginate Fibres for Nerve Repair. Materials Science and Engineering: C, 73, 653-664.
https://doi.org/10.1016/j.msec.2016.12.016
[34]  Li, B., Lu, F., Wei, X. and Zhao, R.X. (2008) Fucoidan: Structure and Bioactivity. Molecules, 13, 1671-1695.
https://doi.org/10.3390/molecules13081671
[35]  Nishino, T., Yokoyama, G., Dobashi, K., Fujihara, M. and Nagumo, T. (1989) Isolation, Purification, and Characterization of Fucose-Containing Sulfated Polysaccharides from the Brown Seaweed Ecklonia kurome and Their Blood-Anticoagulant Activities. Carbohydrate Research, 186, 119-129.
https://doi.org/10.1016/0008-6215(89)84010-8
[36]  Dobashi, K., Nishino, T., Fujihara, M. and Nagumo, T. (1989) Isolation and Preliminary Characterization of Fucose-Containing Sulfated Polysaccharides with Blood-Anticoagulant Activity from the Brown Seaweed Hizikia fusiforme. Carbohydrate Research, 194, 315-320.
https://doi.org/10.1016/0008-6215(89)85032-3
[37]  Chevolot, L., Foucault, A., Chaubet, F., et al. (1999) Further Data on the Structure of Brown Seaweed Fucans: Relationships with Anticoagulant Activity. Carbohydrate Research, 319, 154-165.
https://doi.org/10.1016/S0008-6215(99)00127-5
[38]  Li, B., Zhao, R.X. and Wei, X.J. (2008) Anticoagulant Activity of Fucoidan from Hizikia fusiforme. Agro Food Industry Hi Tech, 19, 22-24.
[39]  Rocha, H.A., Moraes, F.A., Trindade, E.S., et al. (2005) Structural and Hemostatic Activities of a Sulfated Galactofucan from the Brown Alga Spatoglossum schroederi: An Ideal Antithrombotic Agent? Journal of Biological Chemistry, 280, 41278-41288.
https://doi.org/10.1074/jbc.M501124200
[40]  Zhang, Z., Teruya, K., Eto, H. and Shirahata, S. (2013) Induction of Apoptosis by Low-Molecular-Weight Fucoidan through Calcium- and Caspase-Dependent Mitochondrial Pathways in MDA-MB-231 Breast Cancer Cells. Bioscience, Biotechnology, and Biochemistry, 77, 235-242.
https://doi.org/10.1271/bbb.120631
[41]  Kasai, A., Arafuka, S., Koshiba, N., et al. (2015) Systematic Synthesis of Low-Molecular Weight Fucoidan Derivatives and Their Effect on Cancer Cells. Organic & Biomolecular Chemistry, 13, 10556-10568.
https://doi.org/10.1039/C5OB01634G
[42]  Sun, T., Zhang, X., Miao, Y., et al. (2018) Studies on Antiviral and Immuno-Regulation Activity of Low Molecular Weight Fucoidan from Laminaria japonica. Journal of Ocean University of China, 17, 705-711.
https://doi.org/10.1007/s11802-018-3794-1
[43]  Liu, Q., Qin, Y., Jiang, B., et al. (2022) Development of Self-Assembled Zein-Fucoidan Complex Nanoparticles as a Delivery System for Resveratrol. Colloids and Surfaces B: Biointerfaces, 216, Article ID: 112529.
https://doi.org/10.1016/j.colsurfb.2022.112529
[44]  Shanthi, N., Arumugam, P., Murugan, M., Sudhakar, M.P. and Arunkumar, K. (2021) Extraction of Fucoidan from Turbinaria decurrens and the Synthesis of Fucoidan-Coated AgNPs for Anticoagulant Application. ACS Omega, 6, 30998-31008.
https://doi.org/10.1021/acsomega.1c03776
[45]  Pereira, L. and Ribeiro-Claro, P. (2014) Analysis by Vibrational Spectroscopy of Seaweed with Potential Use in Food, Pharmaceutical and Cosmetic Industries. International Journal of Carbohydrate Chemistry, 2013, Article ID 537202.
https://doi.org/10.1155/2013/537202
[46]  Mourelle, M.L., Gómez, C.P. and Legido, J.L. (2021) Role of Algal Derived Compounds in Pharmaceuticals and Cosmetics. In: Rajauria, G. and Yuan, Y.V., Eds., Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives, Wiley, New York, 537-603.
https://doi.org/10.1002/9781119542650.ch19
[47]  Charoensiddhi, S., Abraham, R.E., Su, P. and Zhang, W. (2020) Seaweed and Seaweed-Derived Metabolites as Prebiotics. Advances in Food and Nutrition Research, 91, 97-156.
https://doi.org/10.1016/bs.afnr.2019.10.001
[48]  Gunathilaka, T.L., Samarakoon, K., Ranasinghe, P. and Peiris, L.D.C. (2020) Antidiabetic Potential of Marine Brown Algae—A Mini Review. Journal of Diabetes Research, 2020, Article ID: 1230218.
https://doi.org/10.1155/2020/1230218
[49]  Zaharudin, N., Tullin, M., Pekmez, C.T., et al. (2021) Effects of Brown Seaweeds on Postprandial Glucose, Insulin and Appetite in Humans—A Randomized, 3-Way, Blinded, Cross-Over Meal Study. Clinical Nutrition, 40, 830-838.
https://doi.org/10.1016/j.clnu.2020.08.027
[50]  Dejean, G., Tamura, K., Cabrera, A., et al. (2020) Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific β (1, 3)-Glucans by Human Gut Bacteroides. ASM Journals, 11, e00095-20.
https://doi.org/10.1128/mBio.00095-20
[51]  Hepler, J.R. and Gilman, A.G. (1992) G Proteins. Trends in Biochemical Sciences, 17, 383-387.
https://doi.org/10.1016/0968-0004(92)90005-T
[52]  Echave, J., Otero, P., Garcia-Oliveira, P., et al. (2022) Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants, 11, Article 176.
https://doi.org/10.3390/antiox11010176
[53]  Machado, M., Machado, S., Pimentel, F.B., et al. (2020) Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods, 9, Article 1382.
https://doi.org/10.3390/foods9101382
[54]  Wu, M., Tong, C., Wu, Y., et al. (2016) A Novel Thyroglobulin-Binding Lectin from the Brown Alga Hizikia fusiformis and Its Antioxidant Activities. Food Chemistry, 201, 7-13.
https://doi.org/10.1016/j.foodchem.2016.01.061
[55]  Yu, Z., Yin, Y., Zhao, W., et al. (2011) Characterization of ACE-Inhibitory Peptide Associated with Antioxidant and Anticoagulation Properties. Journal of Food Science, 76, C1149-C1155.
https://doi.org/10.1111/j.1750-3841.2011.02367.x
[56]  Reuter, S., Gupta, S.C., Chaturvedi, M.M. and Aggarwal, B.B. (2010) Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radical Biology and Medicine, 49, 1603-1616.
https://doi.org/10.1016/j.freeradbiomed.2010.09.006
[57]  Carneiro, R.F., Duarte, P.L., Chaves, R.P., et al. (2020) New Lectins from Codium isthmocladum Vickers Show Unique Amino Acid Sequence and Antibiofilm Effect on Pathogenic Bacteria. Journal of Applied Phycology, 32, 4263-4276.
https://doi.org/10.1007/s10811-020-02198-x
[58]  Boonsri, N., Rudtanatip, T., Withyachumnarnkul, B. and Wongprasert, K. (2017) Protein Extract from Red Seaweed Gracilaria fisheri Prevents Acute Hepatopancreatic Necrosis Disease (AHPND) Infection in Shrimp. Journal of Applied Phycology, 29, 1597-1608.
https://doi.org/10.1007/s10811-016-0969-2
[59]  Barre, A., Simplicien, M., Benoist, H., Van Damme, E.J.M. and Rougé, P. (2019) Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Marine Drugs, 17, Article 440.
https://doi.org/10.3390/md17080440
[60]  Seca, A.M. and Pinto, D.C. (2018) Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Marine Drugs, 16, Article 237.
https://doi.org/10.3390/md16070237
[61]  Furuta, T., Miyabe, Y., Yasui, H., Kinoshita, Y. and Kishimura, H. (2016) Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata. Marine Drugs, 14, Article 32.
https://doi.org/10.3390/md14020032
[62]  Hayes, M. and Tiwari, B.K. (2015) Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities. International Journal of Molecular Sciences, 16, 22485-22508.
https://doi.org/10.3390/ijms160922485
[63]  Senthilkumar, N., Kurinjimalar, C., Thangam, R., et al. (2013) Further Studies and Biological Activities of Macromolecular Protein R-Phycoerythrin from Portieria hornemannii. International Journal of Biological Macromolecules, 62, 107-116.
https://doi.org/10.1016/j.ijbiomac.2013.08.004
[64]  Chaves, R.P., Da Silva, S.R., Neto, L.G.N., et al. (2018) Structural Characterization of Two Isolectins from the Marine Red Alga Solieria filiformis (Kützing) P.W. Gabrielson and Their Anticancer Effect on MCF-7 Breast Cancer Cells. International Journal of Biological Macromolecules, 107, 1320-1329.
https://doi.org/10.1016/j.ijbiomac.2017.09.116
[65]  Mclaughlin, C., Harnedy-Rothwell, P.A., Lafferty, R., et al. (2021) Macroalgal Protein Hydrolysates from Palmaria palmata Influence the ‘Incretin Effect’ in vitro via DPP-4 Inhibition and Upregulation of Insulin, GLP-1 and GIP Secretion. European Journal of Nutrition, 60, 4439-4452.
https://doi.org/10.1007/s00394-021-02583-3
[66]  Opinto, G., Natalicchio, A. and Marchetti, P. (2013) Physiology of Incretins and Loss of Incretin Effect in Type 2 Diabetes and Obesity. Archives of Physiology and Biochemistry, 119, 170-178.
https://doi.org/10.3109/13813455.2013.812664
[67]  Mennella, I., Fogliano, V. and Vitaglione, P. (2014) Salivary Lipase and α-Amylase Activities Are Higher in Overweight than in Normal Weight Subjects: Influences on Dietary Behavior. Food Research International, 66, 463-468.
https://doi.org/10.1016/j.foodres.2014.10.008
[68]  Lee, J.M., Lee, H., Kang, S., et al. (2016) Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients, 8, Article 23.
https://doi.org/10.3390/nu8010023
[69]  Sánchez-Machado, D., López-Cervantes, J., Lopez-Hernandez, J. and Paseiro-Losada, P. (2004) Fatty Acids, Total Lipid, Protein and Ash Contents of Processed Edible Seaweeds. Food Chemistry, 85, 439-444.
https://doi.org/10.1016/j.foodchem.2003.08.001
[70]  Funk, C.D. (2001) Prostaglandins and Leukotrienes: Advances in Eicosanoid Biology. Science, 294, 1871-1875.
https://doi.org/10.1126/science.294.5548.1871
[71]  Macartain, P., Gill, C.I., Brooks, M., et al. (2007) Nutritional Value of Edible Seaweeds. Nutrition Reviews, 65, 535-543.
https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
[72]  Skrzypczyk, V.M., Hermon, K.M., Norambuena, F., et al. (2019) Is Australian Seaweed Worth Eating? Nutritional and Sensorial Properties of Wild-Harvested Australian versus Commercially Available Seaweeds. Journal of Applied Phycology, 31, 709-724.
https://doi.org/10.1007/s10811-018-1530-2
[73]  Schmid, M., Kraft, L.G., Van Der Loos, L.M., et al. (2018) Southern Australian Seaweeds: A Promising Resource for ω-3 Fatty Acids. Food Chemistry, 265, 70-77.
https://doi.org/10.1016/j.foodchem.2018.05.060
[74]  Pomin, V.H. (2012) Seaweed: Ecology, Nutrient Composition and Medicinal Uses. Nova Science Pub Inc., New York.
[75]  Susanti, D., Ruslan, F.S., Shukor, M.I., et al. (2022) Optimisation of Vitamin B12 Extraction from Green Edible Seaweed (Ulva lactuca) by Applying the Central Composite Design. Molecules, 27, Article 4459.
https://doi.org/10.3390/molecules27144459
[76]  Bartle, W., Madorin, P. and Ferland, G. (2001) Seaweed, Vitamin K, and Warfarin. American Journal of Health-System Pharmacy, 58, 2300.
https://doi.org/10.1093/ajhp/58.23.2300
[77]  Hughes, L.J., Black, L.J., Sherriff, J.L., et al. (2018) Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients, 10, Article 876.
https://doi.org/10.3390/nu10070876
[78]  Barot, M., Nirmal Kumar, J. and Kumar, R.N. (2019) An Evaluation of the Nutritional Composition of Seaweeds as Potential Source of Food and Feed. National Academy Science Letters, 42, 459-464.
https://doi.org/10.1007/s40009-019-0783-x
[79]  Ank, G., Da Gama, B.A.P. and Pereira, R.C. (2013) Polyphenols from Stypopodium zonale (Phaeophyceae): Intrapopulational Variation, Induction by Simulated Herbivory, and Epibiosis Effects. Aquatic Botany, 111, 125-129.
https://doi.org/10.1016/j.aquabot.2013.06.007
[80]  Besednova, N.N., Andryukov, B.G., Zaporozhets, T.S., et al. (2020) Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines, 8, Article 342.
https://doi.org/10.3390/biomedicines8090342
[81]  Hartmann, A., Ganzera, M., Karsten, U., Skhirtladze, A. and Stuppner, H. (2018) Phytochemical and Analytical Characterization of Novel Sulfated Coumarins in the Marine Green Macroalga Dasycladus vermicularis (Scopoli) Krasser. Molecules, 23, Article 2735.
https://doi.org/10.3390/molecules23112735
[82]  Thomas, N.V. and Kim, S.K. (2011) Potential Pharmacological Applications of Polyphenolic Derivatives from Marine Brown Algae. Environmental Toxicology and Pharmacology, 32, 325-335.
https://doi.org/10.1016/j.etap.2011.09.004
[83]  Li, Y.X., Wijesekara, I., Li, Y., et al. (2011) Phlorotannins as Bioactive Agents from Brown Algae. Process Biochemistry, 46, 2219-2224.
https://doi.org/10.1016/j.procbio.2011.09.015
[84]  Shin, T., Ahn, M., Hyun, J.W., Kim, S.H. and Moon, C. (2014) Antioxidant Marine Algae Phlorotannins and Radioprotection: A Review of Experimental Evidence. Acta Histochemica, 116, 669-674.
https://doi.org/10.1016/j.acthis.2014.03.008
[85]  Barbosa, M., Lopes, G., Ferreres, F., et al. (2017) Phlorotannin Extracts from Fucales: Marine Polyphenols as Bioregulators Engaged in Inflammation-Related Mediators and Enzymes. Algal Research, 28, 1-8.
https://doi.org/10.1016/j.algal.2017.09.009
[86]  Park, J.J. and Lee, W.Y. (2021) Anti-Glycation Effects of Brown Algae Extracts and Its Phenolic Compounds. Food Bioscience, 41, Article ID: 101042.
https://doi.org/10.1016/j.fbio.2021.101042
[87]  Nwosu, F., Morris, J., Lund, V.A., et al. (2011) Anti-Proliferative and Potential Anti-Diabetic Effects of Phenolic-Rich Extracts from Edible Marine Algae. Food Chemistry, 126, 1006-1012.
https://doi.org/10.1016/j.foodchem.2010.11.111
[88]  Naveen, J., Baskaran, R. and Baskaran, V. (2021) Profiling of Bioactives and in vitro Evaluation of Antioxidant and Antidiabetic Property of Polyphenols of Marine Algae Padina tetrastromatica. Algal Research, 55, Article ID: 102250.
https://doi.org/10.1016/j.algal.2021.102250
[89]  Wang, L., Lee, W., Jayawardena, T.U., et al. (2020) Dieckol, an Algae-Derived Phenolic Compound, Suppresses Airborne Particulate Matter-Induced Skin Aging by Inhibiting the Expressions of Pro-Inflammatory Cytokines and Matrix Metalloproteinases through Regulating NF-κB, AP-1, and MAPKs Signaling Pathways. Food and Chemical Toxicology, 146, Article ID: 111823.
https://doi.org/10.1016/j.fct.2020.111823
[90]  Namvar, F., Mohamed, S., Fard, S.G., et al. (2012) Polyphenol-Rich Seaweed (Eucheuma cottonii) Extract Suppresses Breast Tumour via Hormone Modulation and Apoptosis Induction. Food Chemistry, 130, 376-382.
https://doi.org/10.1016/j.foodchem.2011.07.054
[91]  Balboa, E.M., Conde, E., Moure, A., Falqué, E. and Domínguez, H. (2013) In vitro Antioxidant Properties of Crude Extracts and Compounds from Brown Algae. Food Chemistry, 138, 1764-1785.
https://doi.org/10.1016/j.foodchem.2012.11.026
[92]  Chakdar, H. and Pabbi, S. (2017) Algal Pigments for Human Health and Cosmeceuticals. In: Rastogi, R.P., Madamwar, D. and Pandey, A., Eds., Algal Green Chemistry, Elsevier, Amsterdam, 171-188.
https://doi.org/10.1016/B978-0-444-63784-0.00009-6
[93]  Cornish, M.L. and Garbary, D.J. (2010) Antioxidants from Macroalgae: Potential Applications in Human Health and Nutrition. Algae, 25, 155-171.
https://doi.org/10.4490/algae.2010.25.4.155
[94]  Ishikawa, C., Tafuku, S., Kadekaru, T., et al. (2008) Antiadult T-Cell Leukemia Effects of Brown Algae Fucoxanthin and Its Deacetylated Product, Fucoxanthinol. International Journal of Cancer, 123, 2702-2712.
https://doi.org/10.1002/ijc.23860
[95]  Ganesan, P., Noda, K., Manabe, Y., et al. (2011) Siphonaxanthin, a Marine Carotenoid from Green Algae, Effectively Induces Apoptosis in Human Leukemia (HL-60) Cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810, 497-503.
https://doi.org/10.1016/j.bbagen.2011.02.008
[96]  Dolganyuk, V., Belova, D., Babich, O., et al. (2020) Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules, 10, Article 1153.
https://doi.org/10.3390/biom10081153
[97]  Wu, Q., Zhang, X.S., Wang, H.D., et al. (2014) Astaxanthin Activates Nuclear Factor Erythroid-Related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE) Pathway in the Brain after Subarachnoid Hemorrhage in Rats and Attenuates Early Brain Injury. Marine Drugs, 12, 6125-6141.
https://doi.org/10.3390/md12126125
[98]  Sasaki, Y., Kobara, N., Higashino, S., Giddings, J.C. and Yamamoto, J. (2011) Astaxanthin Inhibits Thrombosis in Cerebral Vessels of Stroke-Prone Spontaneously Hypertensive Rats. Nutrition Research, 31, 784-789.
https://doi.org/10.1016/j.nutres.2011.09.010
[99]  Kumar, C.S., Ganesan, P., Suresh, P., et al. (2008) Seaweeds as a Source of Nutritionally Beneficial Compounds—A Review. Journal of Food Science and Technology, 45, 1-13.
[100]  Abu-Ghannam, N. and Shannon, E. (2017) Seaweed Carotenoid, Fucoxanthin, as Functional Food. In: Gupta, V.K., Treichel, H., Shapaval, V., de Oliveira, L.A. and Tuohy, M.G., Eds., Microbial Functional Foods and Nutraceuticals, Wiley, New York, 39-64.
https://doi.org/10.1002/9781119048961.ch3
[101]  Miyashita, K. and Hosokawa, M. (2017) Fucoxanthin in the Management of Obesity and Its Related Disorders. Journal of Functional Foods, 36, 195-202.
https://doi.org/10.1016/j.jff.2017.07.009
[102]  Liao, Z.Y., Chen, J.L., Chen, Q.N., Yang, Y.F. and Xiao, Q. (2021) Fucoxanthin Rescues Dexamethasone Induced C2C12 Myotubes Atrophy. Biomedicine & Pharmacotherapy, 139, Article ID: 111590.
https://doi.org/10.1016/j.biopha.2021.111590
[103]  Hosokawa, M., Miyashita, T., Nishikawa, S., et al. (2010) Fucoxanthin Regulates Adipocytokine mRNA Expression in White Adipose Tissue of Diabetic/Obese KK-Ay Mice. Archives of Biochemistry and Biophysics, 504, 17-25.
https://doi.org/10.1016/j.abb.2010.05.031
[104]  Deng, Z.Y., Shan, W.G., Wang, S.F., et al. (2017) Effects of Astaxanthin on Blood Coagulation, Fibrinolysis and Platelet Aggregation in Hyperlipidemic Rats. Pharmaceutical Biology, 55, 663-672.
https://doi.org/10.1080/13880209.2016.1261905
[105]  Nishida, Y., Yamashita, E. and Miki, W. (2007) Quenching Activities of Common Hydrophilic and Lipophilic Antioxidants against Singlet Oxygen Using Chemiluminescence Detection System. Carotenoid Science, 11, 16-20.
[106]  Davinelli, S., Nielsen, M.E. and Scapagnini, G. (2018) Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients, 10, Article 522.
https://doi.org/10.3390/nu10040522
[107]  Capelli, B., Talbott, S., Ding, L., et al. (2021) Efficacy of Astaxanthin from Different Sources: Reports on the Suitability for Human Health and Nutrition. In: Ravishankar, G.A. and Rao, A.R., Eds., Global Perspectives on Astaxanthin, Academic Press, Cambridge, 391-409.
https://doi.org/10.1016/B978-0-12-823304-7.00027-1
[108]  Park, J.S., Chyun, J.H., Kim, Y.K., Line, L.L. and Chew, B.P. (2010) Astaxanthin Decreased Oxidative Stress and Inflammation and Enhanced Immune Response in Humans. Nutrition & Metabolism, 7, Article No. 18.
https://doi.org/10.1186/1743-7075-7-18
[109]  Kishimoto, Y., Yoshida, H. and Kondo, K. (2016) Potential Anti-Atherosclerotic Properties of Astaxanthin. Marine Drugs, 14, Article 35.
https://doi.org/10.3390/md14020035
[110]  Li, J., Wang, F., Xia, Y., et al. (2015) Astaxanthin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy via the ROS/MAPK Pathway in Mice. Marine Drugs, 13, 3368-3387.
https://doi.org/10.3390/md13063368
[111]  Satti, H.H., Khaleel, E.F., Badi, R.M., et al. (2020) Subacute Administration of Astaxanthin Inhibits Vitamin K-Dependent Clotting Factors in Rats. Journal of Food Biochemistry, 44, e13407.
https://doi.org/10.1111/jfbc.13407
[112]  Yamagata, K. (2021) Prevention of Cardiovascular Disease through Modulation of Endothelial Cell Function by Dietary Seaweed Intake. Phytomedicine Plus, 1, Article ID: 100026.
https://doi.org/10.1016/j.phyplu.2021.100026
[113]  Ramírez-Mérida, L., Zepka, L. and Jacob-Lopes, E. (2017) Current Production of Microalgae at Industrial Scale. Recent Advances in Renewable Energy, 1, 242-260.
[114]  大众日报. 打破国外技术垄断, 海藻酸钠带出百亿市场[EB/OL].
https://new.qq.com/rain/a/20211017A02ZLC00, 2021-10-17.
[115]  Asai, A., Yonekura, L. and Nagao, A. (2008) Low Bioavailability of Dietary Epoxyxanthophylls in Humans. British Journal of Nutrition, 100, 273-277.
https://doi.org/10.1017/S0007114507895468

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133