All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Enhancing Accumulation and Penetration Efficiency of Next-Generation Antibiotics to Mitigate Antibiotic Resistance in Pseudomonas aeruginosa PAO1

DOI: 10.4236/jbise.2023.168008, PP. 107-120

Keywords: Pseudomonas aeruginosa PAO1, Antibiotic Resistance, Next-Generation Antibiotics, Adjuvant Synergy, Intracellular Accumulation, Penetration Rates, Minimum Inhibitory Concentration (MIC), Resistance Tra-jectory, Fluorescence Quantification

Full-Text   Cite this paper   Add to My Lib


This study explores the efficacy of advanced antibiotic compounds against P. aeruginosa, focusing on Antibiotic B, an enhanced derivative of Ceftriaxone. The study measured the intracellular uptake of Antibiotic B and introduced a novel adjuvant, Influximax, which augmented its antibacterial activity. Results showed a diminished potential for resistance emergence with Antibiotic B, particularly when used in combination with Influximax. The study suggests that optimizing antibiotic delivery into bacterial cells and leveraging syner-gistic adjuvant combinations can enhance drug resistance combat.


[1]  CDC (2019) Antibiotic Resistance Threats in the United States. Centers for Disease Control and Prevention, Atlanta.
[2]  WHO (2021) Antibiotic Resistance. World Health Organization, Geneva.
[3]  Mirzaei, B., Norouzi Bazgir, Z., Goli, H.R., Iranpour, F., Mohammadi, F. and Babaei, R. (2020) Prevalence of Multi-Drug Resistant (MDR) and Extensively Drug-Resistant (XDR) Phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii Isolated in Clinical Samples from Northeast of Iran. BMC Research Notes, 13, Article No. 380.
[4]  Baquero, F. and Martínez, J.-L. (2017) Interventions on Metabolism: Making Antibiotic-Susceptible Bacteria. Comment mBio, 8, e01950-17.
[5]  Naskar, A. and Kim, K.-S. (2019) Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms, 7, Article No. 356.
[6]  Kolpen, M., Kragh, K.N., Enciso, J.B., Faurholt-Jepsen, D., Lindegaard, B., Egelund, G.B. and Bjarnsholt, T. (Year) Bacterial Biofilms Predominate in both Acute and Chronic Human Lung Infections. Thorax, 77, 1015-1022.
[7]  Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M. and Høiby, N. (2013) Applying Insights from Biofilm Biology to Drug Development—Can a New Approach Be Developed? Nature Reviews Drug Discovery, 12, 791-808.
[8]  Fernández, L. and Hancock, R.E. (2016) Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 25, 661-681.
[9]  Gomes, N.G.M., Madureira-Carvalho, á., Dias-da-Silva, D., Valentão, P. and Andrade, P.B. (2021) Biosynthetic Versatility of Marine-Derived Fungi on the Delivery of Novel Antibacterial Agents against Priority Pathogens. Biomedicine & Pharmacotherapy, 140, Article ID: 111756.
[10]  Lochab, V., Jones, T.H., Dusane, D.H., Peters, C.W., Stoodley, P., Wozniak, D.J., Subramaniam, V.V. and Prakash, S. (2020) Ultrastructure Imaging of Pseudomonas aeruginosa Lawn Biofilms and Eradication of the Tobramycin-Resistant Variants under in Vitro Electroceutical Treatment. Scientific Reports, 10, Article No. 9879.
[11]  Aderibigbe, B.A. (2017) Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules, 22, Article No. 1370.
[12]  Li, X.Z., Plésiat, P. and Nikaido, H. (2017) The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28, 337-418.
[13]  Martínez, J.L., Coque, T.M., Lanza, V.F., de la Cruz, F. and Baquero, F. (2016) Genomic and Metagenomic Technologies to Explore the Antibiotic Resistance Mobilome. Annals of the New York Academy of Sciences, 1388, 26-41.
[14]  Pang, Z., Raudonis, R., Glick, B.R., Lin, T.J. and Cheng, Z. (2019) Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnology Advances, 37, 177-192.
[15]  Feng, J., Zhang, S., Shi, W. and Zhang, Y. (2016) Ceftriaxone Pulse Dosing Fails to Eradicate Biofilm-Like Microcolony B. burgdorferi Persisters Which Are Sterilized by Daptomycin/Doxycycline/Cefuroxime without Pulse Dosing. Frontiers in Microbiology, 7, Article No. 1744.
[16]  Blommaert, A., Marais, C., Hens, N., Coenen, S., Muller, A., Goossens, H. and Beutels, P. (2014) Determinants of Between-Country Differences in Ambulatory Antibiotic Use and Antibiotic Resistance in Europe: A Longitudinal Observational Study. Journal of Antimicrobial Chemotherapy, 69, 535-547.
[17]  Ventola, C.L. (2016) The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 41, 277-283.
[18]  Wang, Y., Ha, U. and Zeng, A.P. (2020) Antibiotics as Signaling Molecules. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, Article ID: 20150262.
[19]  Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R.D., Idzik, D. and Wąsik, T.J. (2018) Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus aureus Clinical Strains. International Journal of Environmental Research and Public Health, 15, Article No. 2321.
[20]  Hong, L.T., Downes, K.J., FakhriRavari, A., Abdul-Mutakabbir, J.C., Kuti, J.L., Jorgensen, S., Young, D.C., Alshaer, M.H., Bassetti, M., Bonomo, R.A., Gilchrist, M., Jang, S.M., Lodise, T., Roberts, J.A., Tängdén, T., Zuppa, A. and Scheetz, M.H. (2023) International Consensus Recommendations for the Use of Prolonged-Infusion Beta-Lactam Antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 43, 740-777.
[21]  Silver, L.L. (2016) A Gestalt Approach to Gram-Negative Entry. Bioorganic & Medicinal Chemistry, 24, 6379-6389.
[22]  Wiegand, I., Hilpert, K. and Hancock, R.E. (2008) Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nature Protocols, 3, 163-175.
[23]  Zhang, L. and Yoneyama, H. (2016) Development of Fluorescent Substrates and Assays for the Key Autophagy-Related Cysteine Protease Enzyme, ATG4B. Assay and Drug Development Technologies, 14, 507.
[24]  Bernal, P., Molina-Santiago, C., Daddaoua, A. and Llamas, M.A. (2017) Antibiotic Adjuvants—A Strategy to Unlock Bacterial Resistance to Antibiotics. Biochemical Pharmacology, 134, 100-114.
[25]  Minitab LLC (2021) Minitab (Version 20) [Computer Software]. Minitab, LLC, Pennsylvania.
[26]  Nikaido, H. and Pagès, J.-M. (2012) Broad-Specificity Efflux Pumps and Their Role in Multidrug Resistance of Gram-Negative Bacteria. FEMS Microbiology Reviews, 36, 340-363.
[27]  Field, A. (2013) Discovering Statistics Using IBM SPSS Statistics. Sage, London.
[28]  Oliver, A., Mulet, X., López-Causapé, C. and Juan, C. (2015) The Increasing Threat of Pseudomonas aeruginosa High-Risk Clones. Drug Resistance Updates, 21-22, 41-59.
[29]  Silver, L.L. (2016) A Gestalt Understanding of the Mechanism of Action of Antibiotics. ACS Infectious Diseases, 2, 365-383.
[30]  Stover, C.K., Pham, X.Q., Erwin, A.L., et al. (2000) Complete Genome Sequence of Pseudomonas aeruginosa PAO1, an Opportunistic Pathogen. Nature, 406, 959-964.
[31]  Owuama, C.I. (2017) Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Using a Novel Dilution Tube Method. African Journal of Microbiology Research, 11, 977-980.
[32]  Wright, G.D. (2016) Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. Trends in Microbiology, 24, 862-871.
[33]  Gupta, V. and Datta, P. (2019) Next-Generation Strategy for Treating Drug-Resistant Bacteria: Antibiotic Hybrids. Indian Journal of Medical Research, 149, 97-106.
[34]  Lu, W.-P., Kincaid, E., Sun, Y. and Bauer, M.D. (2001) Kinetics of β-Lactam Interactions with Penicillin-Susceptible and -Resistant Penicillin-Binding Protein 2x Proteins from Streptococcus pneumoniae: Involvement of Acylation and Deacylation in β-Lactam Resistance. Enzyme Catalysis and Regulation, 276, 31494-31501.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413