|
基于丝素蛋白止血抗菌有机高分子材料的研究进展
|
Abstract:
伤口止血在外科手术及医疗救护过程中起着至关重要的作用。目前,商业的止血材料,如纱布、明胶海绵和绷带等,可以通过封闭出血伤口表面,实现浅表伤口的止血,然而,内脏器官或中枢神经组织损伤后的快速有效止血与组织修复仍是临床难题。丝素蛋白(Silk fibroin)作为一种天然有机高分子,由于其良好的机械强度、低免疫原性以及良好的相容性等优势,已被广泛关注并应用于生物医学工程领域。基于层层自组装、静电纺丝以及冷冻干燥等材料合成技术,形式繁多的丝素蛋白止血材料已被成功研制,并具备出色的凝血性能。虽然丝素蛋白材料已广泛应用于止血,但其止血的分子机制仍不十分清楚。同时,缺乏抗菌能力也是限制其在生物医学应用的主要原因之一。因此,本综述讨论了当前研究中基于丝素蛋白的多功能止血材料的合成制备以及改性后的丝素蛋白抗菌生物材料,为今后设计和合成新型止血材料提供思路。
Wound haemostasis plays a crucial role in surgery and medical care. Currently, commercial hemostatic materials, such as gauze, gelatin sponges and bandages, can achieve hemostasis of wounds by sealing the surface of bleeding wounds. However, rapid hemostasis and effective repair of injured internal organs and central nervous systems still remain great clinical challenges. Silk fibroin is a kind of natural protein, which possesses excellent mechanical strength, low immunogenicity and good compatibility. It has been widely used in the field of biomedical engineering. Through material synthesis techniques such as layer-by-layer self-assembly, electrospinning, and freeze-drying, a myriad of silk fibrin based hemostatic materials have been successfully developed, exhibiting excellent coagulation properties. Although silk fibroin based biomaterials have been widely used for haemostasis, their molecular mechanisms of haemostasis are still poorly understood. Meanwhile, the lack of antibacterial capacity is one of the main reasons limiting their biomedical applications. Therefore, this review discusses the silk fibroin based hemostatic materials and modified silk protein antibacterial biomaterials in the current research and provides ideas for the design of new antibacterial hemostatic materials in the future.
[1] | Shah, A., Palmer, A.J.R. and Klein, A.A. (2020) Strategies to Minimize Intraoperative Blood Loss during Major Surgery. British Journal of Surgery, 107, E26-E38. https://doi.org/10.1002/bjs.11393 |
[2] | Sultan, M.T., Hong, H., Lee, O.J., Ajiteru, O., Lee, Y.J., Lee, J.S., Lee, H., Kim, S.H. and Park, C.H. (2022) Silk Fibroin-Based Biomaterials for Hemostatic Applications. Biomolecules, 12, Article No. 660.
https://doi.org/10.3390/biom12050660 |
[3] | Moore, E.E., Moore, H.B., Kornblith, L.Z., Neal, M.D., Hoffman, M., Mutch, N.J., Schochl, H., Hunt, B.J. and Sauaia, A. (2021) Trauma-Induced Coagulopathy. Nature Reviews Disease Primers, 7, Article No. 30.
https://doi.org/10.1038/s41572-021-00264-3 |
[4] | Luo, Y., Tao, F., Wang, J., Chai, Y., Ren, C., Wang, Y., Wu, T. and Chen, Z. (2023) Development and Evaluation of Tilapia Skin-Derived Gelatin, Collagen, and Acellular Dermal Matrix for Potential Use as Hemostatic Sponges. International Journal of Biological Macromolecules, 2023, Article ID: 127014.
https://doi.org/10.1016/j.ijbiomac.2023.127014 |
[5] | Zheng, W.P., Hao, Y.P., Wang, D.Y., Huang, H.L., Guo, F.Z., Sun, Z.Y., Shen, P.L., Sui, K.Y., Yuan, C.Q. and Zhou, Q.H. (2021) Preparation of Triamcinolone Acetonide-Loaded Chitosan/Fucoidan Hydrogel and Its Potential Application as an Oral Mucosa Patch. Carbohydrate Polymers, 272, Article ID: 118493.
https://doi.org/10.1016/j.carbpol.2021.118493 |
[6] | Zhu, Y.L., Liu, L.B., Sun, Z.Y., Ji, Y.J., Wang, D.Y., Mei, L., Shen, P.L., Li, Z.X., Tang, S., Zhang, H., Zhou, Q.H. and Deng, J. (2021) Fucoidan as a Marine-Origin Prebiotic Modulates the Growth and Antibacterial Ability of Lactobacillus rhamnosus. International Journal of Biological Macromolecules, 180, 599-607.
https://doi.org/10.1016/j.ijbiomac.2021.03.065 |
[7] | Xing, X.J., Han, Y. and Cheng, H. (2023) Biomedical Applications of Chitosan/Silk Fibroin Composites: A Review. International Journal of Biological Macromolecules, 240, Article ID: 124407.
https://doi.org/10.1016/j.ijbiomac.2023.124407 |
[8] | Tomeh, M.A., Hadianamrei, R. and Zhao, X.B. (2019) Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics, 11, Article No. 494. https://doi.org/10.3390/pharmaceutics11100494 |
[9] | Holland, C., Numata, K., Rnjak-Kovacina, J. and Seib, F.P. (2019) The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials, 8, e1800465. https://doi.org/10.1002/adhm.201800465 |
[10] | Sun, W.Z., Gregory, D.A., Tomeh, M.A. and Zhao, X.B. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article No. 1499. https://doi.org/10.3390/ijms22031499 |
[11] | 吴建兵, 夏娟. 创伤修复用丝素蛋白敷料的研究进展[J]. 丝绸, 2020, 57(10): 29-33. |
[12] | Li, G.F. and Sun, S. (2022) Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules, 27, Article No. 2757. https://doi.org/10.3390/molecules27092757 |
[13] | Park, Y.R., Sultan, M.T., Park, H.J., Lee, J.M., Ju, H.W., Lee, O.J., Lee, D.J., Kaplan, D.L. and Park, C.H. (2018) NF-κB Signaling Is Key in the Wound Healing Processes of Silk Fibroin. Acta Biomaterialia, 67, 183-195.
https://doi.org/10.1016/j.actbio.2017.12.006 |
[14] | Huang, T.T., Zhou, Z.H., Li, Q.Y., Tang, X.X., Chen, X.L., Ge, Y.F. and Ling, J. (2022) Light-Triggered Adhesive Silk-Based Film for Effective Photodynamic Antibacterial Therapy and Rapid Hemostasis. Frontiers in Bioengineering and Biotechnology, 9, Article ID: 820434. https://doi.org/10.3389/fbioe.2021.820434 |
[15] | Baba, A., Matsushita, S., Kitayama, K., Asakura, T., Sezutsu, H., Tanimoto, A. and Kanekura, T. (2019) Silk Fibroin Produced by Transgenic Silkworms Overexpressing the Arg-Gly-Asp Motif Accelerates Cutaneous Wound Healing in Mice. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 107, 97-103.
https://doi.org/10.1002/jbm.b.34098 |
[16] | Shen, Y., Wang, X.Y., Li, B.B., Guo, Y.J. and Dong, K. (2022) Development of Silk Fibroin-Sodium Alginate Scaffold Loaded Silk Fibroin Nanoparticles for Hemostasis and Cell Adhesion. International Journal of Biological Macromolecules, 211, 514-523. https://doi.org/10.1016/j.ijbiomac.2022.05.064 |
[17] | Haghighattalab, M., Kajbafzadeh, A., Baghani, M., Gharehnazifam, Z., Jobani, B.M. and Baniassadi, M. (2022) Silk Fibroin Hydrogel Reinforced with Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 891166.
https://doi.org/10.3389/fbioe.2022.891166 |
[18] | Guo, B.L., Dong, R.N., Bang, Y.P. and Li, M. (2021) Haemostatic Materials for Wound Healing Applications. Nature Reviews Chemistry, 5, 773-791. https://doi.org/10.1038/s41570-021-00323-z |
[19] | Wang, Z.J., Hu, W.K., Du, Y.Y., Xiao, Y., Wang, X.H., Zhang, S.M., Wang, J.L. and Mao, C.B. (2020) Green Gas-Mediated Cross-Linking Generates Biomolecular Hydrogels with Enhanced Strength and Excellent Hemostasis for Wound Healing. ACS Applied Materials & Interfaces, 12, 13622-13633. https://doi.org/10.1021/acsami.9b21325 |
[20] | Qiao, Z.W., Lv, X.L., He, S.H., Bai, S.M., Liu, X.C., Hou, L.X., He, J.J., Tong, D.M., Ruan, R.J., Zhang, J., Ding, J.X. and Yang, H.H. (2021) A Mussel-Inspired Supramolecular Hydrogel with Robust Tissue Anchor for Rapid Hemostasis of Arterial and Visceral Bleedings. Bioactive Materials, 6, 2829-2840. https://doi.org/10.1016/j.bioactmat.2021.01.039 |
[21] | Bai, S.M., Zhang, X.L., Cai, P.Q., Huang, X.W., Huang, Y.Q., Liu, R., Zhang, M.Y., Song, J.B., Chen, X.D. and Yang, H.H. (2019) A Silk-Based Sealant with Tough Adhesion for Instant Hemostasis of Bleeding Tissues. Nanoscale Horizons, 4, 1333-1341. https://doi.org/10.1039/C9NH00317G |
[22] | Han, J., Lv, X., Hou, Y., Yu, H., Sun, Y., Cui, R., Pan, P. and Chen, J. (2023) Multifunctional Hemostatic Polysaccharide-Based Sponge Enhanced by Tunicate Cellulose: A Promising Approach for Photothermal Antibacterial Activity and Accelerated Wound Healing. International Journal of Biological Macromolecules, 251, Article ID: 126386.
https://doi.org/10.1016/j.ijbiomac.2023.126386 |
[23] | Chen, X., Yan, G.L., Chen, M., Yang, P. and Xu, B.L. (2023) Alkylated Chitosan-Attapulgite Composite Sponge for Rapid Hemostasis. Biomaterials Advances, 153, Article ID: 213569. https://doi.org/10.1016/j.bioadv.2023.213569 |
[24] | Wei, W., Liu, J., Peng, Z.B., Liang, M., Wang, Y.S. and Wang, X.Q. (2020) Gellable Silk Fibroin-Polyethylene Sponge for Hemostasis. Artificial Cells Nanomedicine and Biotechnology, 48, 28-36.
https://doi.org/10.1080/21691401.2019.1699805 |
[25] | Lee, J., Choi, H.N., Cha, H.J. and Yang, Y.J. (2023) Microporous Hemostatic Sponge Based on Silk Fibroin and Starch with Increased Structural Retentivity for Contact Activation of the Coagulation Cascade. Biomacromolecules, 24, 1763-1773. https://doi.org/10.1021/acs.biomac.2c01512 |
[26] | Shefa, A.A., Taz, M., Lee, S.Y. and Lee, B.T. (2019) Enhancement of Hemostatic Property of Plant Derived Oxidized Nanocellulose-Silk Fibroin Based Scaffolds by Thrombin Loading. Carbohydrate Polymers, 208, 168-179.
https://doi.org/10.1016/j.carbpol.2018.12.056 |
[27] | 俞林双, 金万慧, 周颖, 等. 丝素蛋白/茜草素复合纤维膜的制备及应用[J]. 现代纺织技术, 2023, 31(5): 58-65. |
[28] | Huang, X., Fu, Q., Deng, Y., Wang, F., Xia, B., Chen, Z. and Chen, G. (2021) Surface Roughness of Silk Fibroin/Alginate Microspheres for Rapid Hemostasis in Vitro and in Vivo. Carbohydrate Polymers, 253, Article ID: 117256. https://doi.org/10.1016/j.carbpol.2020.117256 |
[29] | Lei, C., Zhu, H., Li, J., Feng, X. and Chen, J. (2016) Preparation and Hemostatic Property of Low Molecular Weight Silk Fibroin. Journal of Biomaterials Science-Polymer Edition, 27, 403-418.
https://doi.org/10.1080/09205063.2015.1136918 |
[30] | 王杨阳, 王岩松. 丝素蛋白生物材料在抗菌领域中的研究进展[J]. 中国感染控制杂志, 2018, 17(6): 547-552. |
[31] | Ahmed, W., Zhai, Z. and Gao, C. (2019) Adaptive Antibacterial Biomaterial Surfaces and Their Applications. Materials Today Bio, 2, Article ID: 100017. https://doi.org/10.1016/j.mtbio.2019.100017 |
[32] | Greenhalgh, R., Dempsey-Hibbert, N.C. and Whitehead, K.A. (2019) Antimicrobial Strategies to Reduce Polymer Biomaterial Infections and Their Economic Implications and Considerations. International Biodeterioration & Biodegradation, 136, 1-14. https://doi.org/10.1016/j.ibiod.2018.10.005 |
[33] | 管彤, 张锋. 生物活性丝素蛋白敷料在创面修复中的研究进展[J]. 丝绸, 2023, 60(2): 35-41. |
[34] | 诸玲玲, 孟现民, 张永信. 氨基糖苷类药物的发展历程[J]. 上海医药, 2011, 32(7): 322-326. |
[35] | 徐昌奎, 蒲小兵, 陆遥, 等. 载庆大霉素丝素蛋白作为半月板修复材料的安全性和抗菌性能[J]. 中国组织工程研究, 2021, 25(10): 1545-1549. |
[36] | 邓丽红, 谢臻, 麦蓝尹, 等. 蒽醌类化合物抗菌活性及其机制研究进展[J]. 中国新药杂志, 2016, 25(21): 2450-2455. |
[37] | 陈珍玉, 张小宁, 罗钰昕, 等. 丝素蛋白/姜黄素复合膜敷料促进皮肤创面愈合的评价[J]. 中国组织工程研究, 2021, 25(16): 2554-2561. |
[38] | Foroushani, P.H., Rahmani, E., Alemzadeh, I., Vossoughi, M., Pourmadadi, M., Rahdar, A. and Díez-Pascual, A.M. (2022) Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. Nanomaterials, 12, Article No. 3426.
https://doi.org/10.3390/nano12193426 |
[39] | Eleraky, N.E., Allam, A., Hassan, S.B. and Omar, M.M. (2020) Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 12, Article No. 142.
https://doi.org/10.3390/pharmaceutics12020142 |
[40] | Hu, L.H., Yang, X., Yin, J., Rong, X., Huang, X.L., Yu, P.Q., He, Z.Q. and Liu, Y. (2021) Combination of AgNPs and Domiphen Is Antimicrobial against Biofilms of Common Pathogens. International Journal of Nanomedicine, 16, 7181-7194. https://doi.org/10.2147/IJN.S334133 |
[41] | Chandraker, S.K. and Kumar, R. (2022) Biogenic Biocompatible Silver Nanoparticles: A Promising Antibacterial Agent. Biotechnology and Genetic Engineering Reviews, 2, 1-35. https://doi.org/10.1080/02648725.2022.2106084 |
[42] | Qamer, S., Romli, M.H., Che-Hamzah, F., Misni, N., Joseph, N.M.S., Al-Haj, N.A. and Amin-Nordin, S. (2021) Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules, 26, Article No. 5057. https://doi.org/10.3390/molecules26165057 |
[43] | Xie, W.J., Chen, J.Y., Cheng, X.T., Feng, H., Zhang, X., Zhu, Z., Dong, S.S., Wan, Q.B., Pei, X.B. and Wang, J. (2023) Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration. Small, 19, e2205941. https://doi.org/10.1002/smll.202205941 |
[44] | Mehrabani, M.G., Karimian, R., Mehramouz, B., Rahimi, M. and Kafil, H.S. (2018) Preparation of Biocompatible and Biodegradable Silk Fibroin/Chitin/Silver Nanoparticles 3D Scaffolds as a Bandage for Antimicrobial Wound Dressing. International Journal of Biological Macromolecules, 114, 961-971. https://doi.org/10.1016/j.ijbiomac.2018.03.128 |
[45] | Babu, P.J., Doble, M. and Raichur, A.M. (2018) Silver Oxide Nanoparticles Embedded Silk Fibroin Spuns: Microwave Mediated Preparation, Characterization and Their Synergistic Wound Healing and Anti-Bacterial Activity. Journal of Colloid and Interface Science, 513, 62-71. https://doi.org/10.1016/j.jcis.2017.11.001 |
[46] | 李振, 刘素美, 贾兰, 等. 丝素蛋白包裹的银纳米粒子稳定性及抗菌性研究[J]. 化工新型材料, 2019, 47(5): 264-268. |
[47] | Shao, J.L., Cui, Y.T., Liang, Y., Liu, H., Ma, B.J. and Ge, S.H. (2021) Unilateral Silver-Loaded Silk Fibroin Difunctional Membranes as Antibacterial Wound Dressings. Acs Omega, 6, 17555-17565.
https://doi.org/10.1021/acsomega.1c02035 |
[48] | 徐双梦, 魏延, 苏慧, 等. 丝素蛋白改性的纳米氧化锌的性能研究[J]. 功能材料, 2019, 50(4): 4121-4125. |
[49] | 李兢思, 甘秋云, 朱琳艳, 等. 透明质酸用于伤口敷料的研究进展[J]. 化纤与纺织技术, 2022, 51(7): 18-21. |
[50] | Xuan, H., Tang, X., Zhu, Y., Ling, J. and Yang, Y. (2020) Freestanding Hyaluronic Acid/Silk-Based Self-Healing Coating toward Tissue Repair with Antibacterial Surface. ACS Applied Bio Materials, 3, 1628-1635.
https://doi.org/10.1021/acsabm.9b01196 |
[51] | Kong, Y., Tang, X.X., Zhao, Y.H., Chen, X.L., Yao, K., Zhang, L.L., Han, Q., Zhang, L.Z., Ling, J., Wang, Y.J. and Yang, Y.M. (2020) Degradable Tough Chitosan Dressing for Skin Wound Recovery. Nanotechnology Reviews, 9, 1576-1585. https://doi.org/10.1515/ntrev-2020-0105 |
[52] | Tang, X.X., Gu, X.Y., Wang, Y.L., Chen, X.L., Ling, J. and Yang, Y.M. (2020) Stable Antibacterial Polysaccharide-Based Hydrogels as Tissue Adhesives for Wound Healing. RSC Advances, 10, 17280-17287.
https://doi.org/10.1039/D0RA02017F |
[53] | Eivazzadeh-Keihan, R., Radinekiyan, F., Aliabadi, H.A.M., Sukhtezari, S., Tahmasebi, B., Maleki, A. and Madanchi, H. (2021) Chitosan Hydrogel/Silk Fibroin/Mg(OH)(2) Nanobiocomposite as a Novel Scaffold with Antimicrobial Activity and Improved Mechanical Properties. Scientific Reports, 11, Article No. 650.
https://doi.org/10.1038/s41598-020-80133-3 |
[54] | Tu, H., Wu, G.M., Yi, Y., Huang, M.T., Liu, R., Shi, X.W. and Deng, H.B. (2019) Layer-by-Layer Immobilization of Amphoteric Carboxymethyl Chitosan onto Biocompatible Silk Fibroin Nanofibrous Mats. Carbohydrate Polymers, 210, 9-16. https://doi.org/10.1016/j.carbpol.2019.01.047 |
[55] | 张治斌, 李刚, 毛森贤, 等. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12. |
[56] | Hashimoto, T., Kojima, K. and Tamada, Y. (2020) Higher Gene Expression Related to Wound Healing by Fibroblasts on Silk Fibroin Biomaterial than on Collagen. Molecules, 25, Article No. 1939.
https://doi.org/10.3390/molecules25081939 |
[57] | Brooks, A.K., Ramsey, R.G., Zhang, N. and Yadavalli, V.K. (2023) Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices. ACS Biomaterials Science & Engineering, 9, 5793-5803. https://doi.org/10.1021/acsbiomaterials.3c00741 |