|
Diels-Alder反应合成萘环及其衍生物的研究进展
|
Abstract:
Diels-Alder反应是合成化学中的一类重要反应类型,Diels-Alder环加成反应广泛应用于取代萘和萘醌的合成。通常,不对称的二烯和亲二烯化合物可能形成一个以上的环加合物,但在某些情况下,有很好的区域化学控制。本文将对这类Diels-Alder反应进行分析和总结。这其中复杂前体的合成可能是促进区域选择性的必要条件。通过文献调研,我们发现通过Diels-Alder反应合成萘环及其衍生物,主要有三种方式:1) 醌对二烯的Diels-Alder加成,2) 邻苯碳醌参与的Diels-Alder加成,3) 苯的Diels-Alder加成。该类反应将成为合成萘环及其衍生物和C-C键形成的重要方法。
Diels-Alder reaction is an important type of reaction in synthetic chemistry. Diels-Alder cycloaddition reaction is widely used in the synthesis of substituted naphthalene and naphthoquinone. Typically, asymmetric dienes and dienophile compounds may form more than one cyclic admixture, but in some cases, there is good regional chemical control. This paper will analyze and summarize these Diels-Alder reactions. The synthesis of these complex precursors may be necessary to promote regional selectivity. Through literature investigation, we found that there are three main ways to synthesize naphthalene rings and their derivatives by Diels-Alder reaction: 1) Diels-Alder addition of quinone to diene, 2) Diels–Alder addition of o-quinodimethanes, and 3) Diels–Alder addition of benzynes. This kind of reaction will be an important method for the synthesis of naphthalene rings and their derivatives and the formation of C-C bonds.
[1] | Ho, L.K., Don, M.J., Chen, H.C., Yeh, S.F. and Chen, J.M. (1996) Inhibition of Hepatitis B Surface Antigen Secretion on Human Hepatoma Cells. Components from Rubia cordifolia. Journal of Natural Products, 59, 330-333.
https://doi.org/10.1021/np960200h |
[2] | Ward, D.N., Talley, D.C., Tavag, M., Menji, S., Schaughency, P., Baier, A. and Smith, P.J. (2014) UK-1 and Structural Analogs Are Potent Inhibitors of Hepatitis C Virus Replication. Bioorganic & Medicinal Chemistry Letters, 24, 609-612. https://doi.org/10.1016/j.bmcl.2013.12.012 |
[3] | Mohan Naidu, K.R., Krishna, B.S., Kumar, M.A., Arulselvan, P., Khalivulla, S.I. and Lasekan. O. (2012) Design, Synthesis and Antiviral Potential of 14-Aryl/Heteroaryl-14H-dibenzo[a,j]xanthenes Using an Efficient Polymer-Supported Catalyst. Molecules, 17, 7543-7555. https://doi.org/10.3390/molecules17067543 |
[4] | Abou-Elmagd, W.S.I. and Hashem, A.I. (2013) Synthesis of 1-Amidoalkyl-2-Naphthols and Oxazine Derivatives with Study of Their Antibacterial and Antiviral Activities. Medicinal Chemistry Research, 22, 2005-2013.
https://doi.org/10.1007/s00044-012-0205-9 |
[5] | Shushni, M.A.M., Mentel, R., Lindequist, U. and Jansen, R. (2013) Balticols A-F, New Naphthalenone Derivatives with Antiviral Activity, from an Ascomycetous Fungus. Chemistry & Biodiversity, 6, 127-137.
https://doi.org/10.1002/cbdv.200800150 |
[6] | Baichwal, R.S., Baichwal, M.R. and Khorana, M.L. (1958) Antibacterial and Antifungal Properties of β-Naphthol Derivatives V. Journal of the American Pharmaceutical Association, 47, 537-541.
https://doi.org/10.1002/jps.3030470802 |
[7] | Sahu, P.K., Sahu, P.K., Thavaselvam, D., Alafeefy, A.M. and Agarwal, D.D. (2015) Synthesis and Evaluation of Antimicrobial Activity of 2-Aminobenzothiazolomethyl Naphthol Derivatives. Medicinal Chemistry Research, 24, 725-736. https://doi.org/10.1007/s00044-014-1150-6 |
[8] | Amand, S., Vallet, M., Guedon, L., Genta-Jouve, G., Wien, F., Mann, S., Dupont, J., Prado, S. and Nay, B. (2017) A Reactive Eremophilane and Its Antibacterial 2(1H)-Naphthalenone Rearrangement Product, Witnesses of a Microbial Chemical Warfare. Organic Letters, 19, 4038-4041. https://doi.org/10.1021/acs.orglett.7b01788 |
[9] | Bringmann, G., Steinert, C., Feineis, D., Mudogo, V., Betzin, J. and Scheller, C. (2016) HIV-Inhibitory Michellamine-Type Dimeric Naphthylisoquinoline Alkaloids from the Central African Liana Ancistrocladus congolensis. Phytochemistry, 128, 71-81. https://doi.org/10.1016/j.phytochem.2016.04.005 |
[10] | Das, B., Reddy, C.R., Kashanna, J., Mamidyala, S.K. and Kumar, C.G. (2012) Multicomponent One-Pot Synthesis of 2-Naphthol Derivatives and Evaluation of Their Anticancer Activity. Medicinal Chemistry Research, 21, 3321-3325.
https://doi.org/10.1007/s00044-011-9884-x |
[11] | Baram, N.I. and Ismailov, A.I. (1993) Biological Activity of Gossypol and Its Derivatives. Chemistry of Natural Compounds, 29, 275-287. https://doi.org/10.1007/BF00630521 |
[12] | Youm, J., Lee, H., Choi, Y. and Yoon, J. (2018) DW2008S and Its Major Constituents from Justicia procumbens Exert Anti-Asthmatic Effect via Multitargeting Activity. Journal of Cellular and Molecular Medicine, 22, 2680-2691.
https://doi.org/10.1111/jcmm.13550 |
[13] | Hallock, Y.F., Manfredi, K.P., Blunt, J.W., Cardellina, J.H., Sch?ffer, M., Gulden, K.P., Bringmann, G., Lee, A.Y., Clardy, J., Fran?ois, G. and Boyd, M.R. (1994) Korupensamines A-D, Novel Antimalarial Alkaloids from Ancistrocladus Korupensis. The Journal of Organic Chemistry, 59, 6349-6355. https://doi.org/10.1021/jo00100a042 |
[14] | Wang, Z., Li, M.Y., Mi, C., Wang, K.S., Ma, J. and Jin, X. (2017) Mollugin Has an Anti-Cancer Therapeutic Effect by Inhibiting TNF-α-Induced NF-κB Activation. International Journal of Molecular Sciences, 18, Article 1619.
https://doi.org/10.3390/ijms18081619 |
[15] | Seephonkai, P., Pyne, S.G., Willis, A.C. and Lie, W. (2013) Bioactive Compounds from the Roots of Strophioblachia fimbricalyx. Journal of Natural Products, 76, 1358-1364. https://doi.org/10.1021/np400268d |
[16] | Takeya, T., Doi, H., Ogata, T., Okamoto, I. and Kotani, E. (2004) Aerobic Oxidative Dimerization of 1-Naphthols to 2,2’-Binaphthoquinones Mediated by SnCl4 and Its Application to Natural Product Synthesis. Tetrahedron, 60, 9049-9060.
https://doi.org/10.1016/j.tet.2004.07.073 |
[17] | Kozlowski, M.C., Dugan, E.C., DiVirgilio, E.S., Maksimenka, K. and Bringmann, G. (2007) Asymmetric Total Synthesis of Nigerone and Ent-Nigerone: Enantioselective Oxidative Biaryl Coupling of Highly Hindered Naphthols. Advanced Synthesis & Catalysis, 349, 583-594. https://doi.org/10.1002/adsc.200600570 |
[18] | Peng, S., Wang, L. and Wang, J. (2013) Direct Access to Highly Substituted 1-Naphthols through Palladium-Catalyzed Oxidative Annulation of Benzoylacetates and Internal Alkynes. Chemistry—A European Journal, 19, 13322-13327.
https://doi.org/10.1002/chem.201302740 |
[19] | Cai, J., Wang, Z.K., Zhang, Y.H., Yao, F., Hu, X.D. and Liu, W.B. (2020) Synthesis of Polysubstituted 2-Naphthols by Palladium-Catalyzed Intramolecular Arylation/Aromatization Cascade. Advanced Synthesis & Catalysis, 362, 1303-1308.
https://doi.org/10.1002/adsc.201901573 |
[20] | Connors, R., Tran, E. and Durst, T. (1996) Acyl Cyanides as Carbonyl Heterodienophiles: Application to the Synthesis of Naphthols, Isoquinolones, and Isocoumarins. Canadian Journal of Chemistry, 74, 221-226.
https://doi.org/10.1139/v96-024 |
[21] | Huang, K.S. and Wang, E.C. (2001) A Novel Synthesis of Substituted Naphthalenes via Claisen Rearrangement and RCM Reaction. Tetrahedron Letters, 42, 6155-6157. https://doi.org/10.1016/S0040-4039(01)01231-X |
[22] | Brown, R.F.C. and McMullen, G.L. (1974) Methyleneketenes and Methylenecarbenes. II. A New Phenolic Ring Synthesis: 2-Naphthol from O-Tolualdehyde. Australian Journal of Chemistry, 27, 2385-2391.
https://doi.org/10.1071/CH9742385 |
[23] | Fields, D.L. (1971) Novel Synthesis of 2-Naphthols; Phenanthrols, Anthracenes, and Other Polycyclic Aromatic Products. The Journal of Organic Chemistry, 36, 3002-3005. https://doi.org/10.1021/jo00819a020 |
[24] | Savard, J. and Brassard, P. (1984) Reactions of Ketene Acetals-14 the Use of Simple Mixed Vinylketene Acetals in the Annulation of Quinones. Tetrahedron, 40, 3455-3464. https://doi.org/10.1016/S0040-4020(01)91496-6 |
[25] | Bringmann, G, G?tz, R., Keller, P.A., Walter, R., Boyd, M.R., Lang, F., Garcia, A., Walsh, J.J., Tellitu, I., Bhaskar, K.V. and Kelly, T.R. (1998) A Convergent Total Synthesis of the Michellamines. The Journal of Organic Chemistry, 63, 1090-1097. https://doi.org/10.1021/jo971495m |
[26] | Kitamura, M., Ohmori, K., Kawase, T. and Suzuki, K. (1999) From Axial Chirality to Central Chiralities: Pinacol Cyclization of 2,2’-Biaryldicarbaldehyde to Trans-9,10-Dihydrophenanthrene-9,10-Diol. Angewandte Chemie International Edition, 38, 1229-1232.
https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1226::AID-ANIE1226>3.0.CO;2-T |
[27] | Sestelo, J.P., Real, M.M., Mouri?o, A. and Sarandeses, L.A. (1999) Synthesis of Polycyclic Structures by Diels-Alder Reaction Using Inner-Outer-Ring 1,3-bis[Trimethylsilyloxy]Dienes. Tetrahedron Letters, 40, 985-988.
https://doi.org/10.1016/S0040-4039(98)02463-0 |
[28] | Andersen, N.G., Maddaford, S.P. and Keay, B.A. (1996) Synthesis of Functionalized Naphthalenes from Substituted 1-Methoxybenzocyclobutenes. The Journal of Organic Chemistry, 61, 2885-2887. https://doi.org/10.1021/jo951978v |
[29] | Charlton, J.L., Oleschuk, C.J. and Chee, G.L. (1996) Hindered Rotation in Arylnaphthalene Lignans. The Journal of Organic Chemistry, 61, 3452-3457. https://doi.org/10.1021/jo952048e |
[30] | Huang, Z., Lakshmikantham, M.V., Lyon, M. and Cava, M.P. (2000) Synthesis and Isolation of Some Benzo[c]tellurophenes. The Journal of Organic Chemistry, 65, 5413-5415. https://doi.org/10.1021/jo0001030 |
[31] | Schmidt, A.H., Kircher, G. and Willems, M. (2000) General Synthetic Entry to Linearly-Fused Dihydrobenzocyclobutene-1,2-Diones and Benzocyclobutene-1,2-Diones via Annulation of 1,2-Bis(Methylene)Carbocycles with 3-Chloro- 3-Cyclobutene-1,2-Dione1. The Journal of Organic Chemistry, 65, 2379-2385.
https://doi.org/10.1021/jo9915877 |
[32] | Gourve`s, J.P., Ruzziconi, R. and Vilarroig, L. (2001) Oxidative Coupling of O-Silyl and O-Alkyl Enethers:? Application of the Novel Annulation Sequence to the Synthesis of Fluorinated Naphthaldehydes and Naphthyl Ketones. The Journal of Organic Chemistry, 66, 617-619. https://doi.org/10.1021/jo001006+ |
[33] | Giles, R.G.F., Hughes, A.B. and Sargent, M.V. (1991) Regioselectivity in the Reactions of Methoxydehydrobenzenes with Furans. Part 2. 2-Methoxyfuran and Methoxydehydrobenzenes. Journal of the Chemical Society, Perkin Transactions 1, 6, 1581-1587. https://doi.org/10.1039/p19910001581 |
[34] | Buttery, J.H. and Wege, D. (1998) Some Transformations of Adducts of 3,6-Dimethoxy-4,5-Methylenedioxy-1,2- Didehydrobenzene and Furans. An Approach to the 5,8-Dimethoxy-6,7-Methylenedioxynaphtho[2,3-c]Furan-4,9- Dione Ring System of Ventilone A. Australian Journal of Chemistry, 51, 409-419. https://doi.org/10.1071/C97209 |
[35] | Best, W.M. and Wege, D. (1986) Intramolecular Diels-Alder Additions of Benzynes to Furans. Exploratory Studies. Australian Journal of Chemistry, 39, 635-645. https://doi.org/10.1071/CH9860635 |
[36] | Hoye, T.R., Chen, M., Hoang, B., Mi, L. and Priest, O.P. (1999) Total Synthesis of Michellamines A-C, Korupensamines A-D, and Ancistrobrevine B. The Journal of Organic Chemistry, 64, 7184-7201.
https://doi.org/10.1021/jo9908187 |
[37] | Pascal Jr., R.A., Barnett, L., Qiao, X. and Ho, D.M. (2000) Giant Cyclophanes Built from Polyphenyl Aromatic Substructures. The Journal of Organic Chemistry, 65, 7711-7717. https://doi.org/10.1021/jo000236l |
[38] | Yudin, A.K., Martyn, L.J.P., Pandiaraju, S., Zheng, J. and Lough, A. (2000) F8BINOL, An Electronically Perturbed Version of BINOL with Remarkable Configurational Stability. Organic Letters, 2, 41-44.
https://doi.org/10.1021/ol991244v |
[39] | Chen, C.L. and Martin, S.F. (2004) Facile Synthesis of 2-Substituted 1, 2-Dihydro-1-naphthols and 2-Substituted 1-Naphthols. Organic Letters, 6, 3581-3584. https://doi.org/10.1021/ol048517t |
[40] | Ma, Y., Lv, J., Liu, C., Yao, X., Yan, G., Yu, W. and Ye, J. (2019) Electrochemical [4+2] Annulation-Rearrangement- Aromatization of Styrenes: Synthesis of Naphthalene Derivatives. Angewandte Chemie International Edition, 58, 6756-6760. https://doi.org/10.1002/anie.201902315 |
[41] | Lu, X.L., Yang, B., He, H. and Gao, S. (2021) Synthesis of Polycyclic Naphthols and Naphthalenes via Tandem Ti(Oi-Pr)4-Promoted Photoenolization Diels-Alder Reaction and Aromatization. Organic Chemistry Frontiers, 8, 1143-1148. https://doi.org/10.1039/D0QO01346C |