全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

近年来N-卤代试剂在芳烃卤化反应中的研究进展
Recent Research Progress of Aromatic Halogenations with N-X Reagents

DOI: 10.12677/JOCR.2023.114015, PP. 150-164

Keywords: 芳烃化合物,卤代反应,N-卤代试剂,芳烃卤化物
Aromatic Compounds
, Halogenation, N-Halogen Reagents, Aryl Halides

Full-Text   Cite this paper   Add to My Lib

Abstract:

芳烃化合物的直接卤代反应是有机反应中最基础也是应用最广的反应类型之一,而得到的芳烃卤化物在有机合成领域中也有着多样化的应用,比如芳烃卤化物能够参与到金属催化的偶联反应中从而合成一系列药物分子、天然产物、材料化合物以及有机半导体化合物等;同时芳烃卤化物也是有机金属试剂的重要前体;此外,芳烃的直接高效的卤代反应也是发现新型药物分子、调节药物分子性质的有效手段之一。因此,芳烃卤化物的合成也显得更加重要。本文主要综述了近年来利用N-卤代试剂对芳烃化合物进行卤化反应的研究进展。
Direct halogenation of aromatic compounds is one of the most fundamental and widely utilized reactions. The obtained aryl halides possess versatile applications in organic synthesis. For instance, they can participate in metal-catalyzed coupling reactions, leading to the synthesis of various molecules such as drugs, natural products, material compounds, and organic semiconductor compounds. Aromatic halogenated compounds also play an important role as precursors to organometallic reagents. In addition, direct and efficient halogenation of aromatics is one method to discover novel drug molecules and adjust their medicinal properties. Consequently, the synthesis of aromatic halogenated compounds has become of greater importance. This article primarily summarizes the recent advancements in the halogenation of aromatic compounds using N-halogenating reagents.

References

[1]  Das, R. and Kapur, M. (2018) Transition-Metal-Catalyzed Site-Selective C-H Halogenation Reactions. Asian Journal of Organic Chemistry, 7, 1524-1541.
https://doi.org/10.1002/ajoc.201800142
[2]  Lied, F., Patra, T. and Glorius, F. (2017) Group 9 Transition Metal-Catalyzed C-H Halogenations. Israel Journal of Chemistry, 57, 945-952.
https://doi.org/10.1002/ijch.201700053
[3]  Saikia, I., Borah, A.J. and Phukan, P. (2016) Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chemical Reviews, 116, 6837-7042.
https://doi.org/10.1021/acs.chemrev.5b00400
[4]  Chen, C., Cao, Y., Wu, X., Cai, Y., Liu, J., Xu, L., Ding, K. and Yu, L. (2020) Energy Saving and Environment-Friendly Element-Transfer Reactions with Industrial Application Potential. Chinese Chemical Letters, 31, 1078-1082.
https://doi.org/10.1016/j.cclet.2019.12.019
[5]  Wang, F., Huang, J., Yang, Y., Xu, L. and Yu, L. (2020) Ton-Scale Production of 1,4-Bis(dichloromethyl)-2, 5-dichlorobenzene via Unexpected Controllable Chlorination of 1,4-Dichloro-2,5-dimethylbenzene. Industrial & Engineering Chemistry Research, 59, 1025-1029.
https://doi.org/10.1021/acs.iecr.9b06489
[6]  Carreno, M.C., Garcia Ruano, J.L., Sanz, G., Toledo, M.A. and Urbano, A. (1995) N-bromosuccinimide in Acetonitrile: A Mild and Regiospecific Nuclear Brominating Reagent for Methoxybenzenes and Naphthalenes. The Journal of Organic Chemistry, 60, 5328-5331.
https://doi.org/10.1021/jo00121a064
[7]  Tang, R.-J., Milcent, T. and Crousse, B. (2018) Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. The Journal of Organic Chemistry, 83, 930-938.
https://doi.org/10.1021/acs.joc.7b02920
[8]  Hashmi, A.S.K. (2007) Gold-Catalyzed Organic Reactions. Chemical Reviews, 107, 3180-3211.
https://doi.org/10.1021/cr000436x
[9]  Li, Z., Brouwer, C. and He, C. (2008) Gold-Catalyzed Organic Transformations. Chemical Reviews, 108, 3239-3265.
https://doi.org/10.1021/cr068434l
[10]  Gorin, D.J., Sherry, B.B.D. and Toste, F.D. (2008) Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108, 3351-3378.
https://doi.org/10.1021/cr068430g
[11]  Shi, Z. and He, C. (2004) An Au-Catalyzed Cyclialkylation of Electron-Rich Arenes with Epoxides to Prepare 3-Chromanols. Journal of the American Chemical Society, 126, 5964-5965.
https://doi.org/10.1021/ja031953a
[12]  Li, Z., Capretto, D.A., Rahaman, R.O. and He, C. (2007) Gold(III)-Catalyzed Nitrene Insertion into Aromatic and Benzylic C-H Groups. Journal of the American Chemical Society, 129, 12058-12059.
https://doi.org/10.1021/ja0724137
[13]  Tanemura, K., Suzuki, T., Nishida, Y., Satsumabayashi, K. and Horaguchi, T. (2003) Halogenation of Aromatic Compounds by N-chloro-, N-bromo-, and N-iodosuccinimide. Chemistry Letters, 32, 932-933.
https://doi.org/10.1246/cl.2003.932
[14]  Prakash, G.K.S., Mathew, T., Hoole, D., Esteves, P.M., Wang, Q., Rasul, G. and Olah, G.A. (2004) N-halosuccinimide/BF3-H2O, Efficient Electrophilic Halogenating Systems for Aromatics. Journal of the American Chemical Society, 126, 15770-15776.
https://doi.org/10.1021/ja0465247
[15]  Mo, F., Yan, J.M., Qiu, D., Li, F., Zhang, Y. and Wang, J. (2010) Gold-Catalyzed Halogenation of Aromatics by N-halosuccinimides. Angewandte Chemie International Edition, 49, 2028-2032.
https://doi.org/10.1002/anie.200906699
[16]  Clardy, J. and Walsh, C. (2004) Lessons from Natural Molecules. Nature, 432, 829-837.
https://doi.org/10.1038/nature03194
[17]  Diederich, F. and Stang, P.J. (1998) Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH, Weinheim.
https://doi.org/10.1002/9783527612222
[18]  Zhou, C.-Y., Li, J., Peddibhotla, S. and Romo, D. (2010) Mild Arming and Derivatization of Natural Products via an In(OTf)3-Catalyzed Arene Iodination. Organic Letters, 12, 2104-2107.
https://doi.org/10.1021/ol100587j
[19]  Ryoo, R. and Kim, J.M. (1997) Generalised Route to the Preparation of Mesoporous Metallosilicates via Post-Synthetic Metal Implantation. Chemical Communications, No. 22, 2225-2226.
https://doi.org/10.1039/a704745b
[20]  Mokaya, R. (1999) Ultrastable Mesoporous Aluminosilicates by Grafting Routes. Angewandte Chemie International Edition, 38, 2930-2934.
https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2930::AID-ANIE2930>3.0.CO;2-8
[21]  Zhang, R., Huang, L., Zhang, Y., Chen, X., Xing, W. and Huang, J. (2012) Silver Catalyzed Bromination of Aromatics with N-bromosuccinimide. Catalysis Letters, 142, 378-383.
https://doi.org/10.1007/s10562-011-0764-2
[22]  Theulier, C.A., García-Rodeja, Y., Miqueu, K., Bouhadir, G. and Bourissou, D. (2023) Lewis Acid-Assisted C(sp3)-C(sp3) Reductive Elimination at Gold. Journal of the American Chemical Society, 145, 10800-10808.
https://doi.org/10.1021/jacs.3c01974
[23]  Aubert, C., Fensterbank, L., Garcia, P., Malacria, M. and Simonneau, A. (2011) Transition Metal Catalyzed Cycloisomerizations of 1,n-allenynes and -allenenes. Chemical Reviews, 111, 1954-1993.
https://doi.org/10.1021/cr100376w
[24]  Krause, N. and Winter, C. (2011) Gold-Catalyzed Ncleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111, 1994-2009.
https://doi.org/10.1021/cr1004088
[25]  Frontier, A., Leboeuf, D. and Ciesielski, J. (2013) Gold(I)-Catalyzed Iodination of Arenes. Synlett, 25, 399-402.
https://doi.org/10.1055/s-0033-1340321
[26]  Kalyani, D., Dick, A.R., Anani, W.Q. and Sanford, M.S. (2006) A Simple Catalytic Method for the Regioselective Halogenation of Arenes. Organic Letters, 8, 2523-2526.
https://doi.org/10.1021/ol060747f
[27]  Wang, L. and Ackermann, L. (2014) Ruthenium-Catalyzed Ortho-C-H Halogenations of Benzamides. Chemical Communications, 50, 1083-1085.
https://doi.org/10.1039/C3CC47852A
[28]  Bauer, I. and Kno?lker, H.-J. (2015) Iron Catalysis in Organic Synthesis. Chemical Reviews, 115, 3170-3387.
https://doi.org/10.1021/cr500425u
[29]  Su, B., Cao, Z.-C. and Shi, Z.-J. (2015) Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Accounts of Chemical Research, 48, 886-896.
https://doi.org/10.1021/ar500345f
[30]  Racys, D.T., Warrilow, C.E., Pimlott, S.L. and Sutherland, A. (2015) Highly Regioselective Iodination of Arenes via Iron(III)-Catalyzed Activation of N-Iodosuccinimide. Organic Letters, 17, 4782-4785.
https://doi.org/10.1021/acs.orglett.5b02345
[31]  Racys, D.T., Sharif, S.A.I., Pimlott, S.L. and Sutherland, A. (2016) Silver(I)-Catalyzed Iodination of Arenes: Tuning the Lewis Acidity of N-iodosuccinimide Activation. The Journal of Organic Chemistry, 81, 772-780.
https://doi.org/10.1021/acs.joc.5b02761
[32]  Mostafa, M.A.B., Bowley, R.M., Racys, D.T., Henry, M.C. and Sutherland, A. (2017) Iron(III)-Catalyzed Chlorination of Activated Arenes. The Journal of Organic Chemistry, 82, 7529-7537.
https://doi.org/10.1021/acs.joc.7b01225
[33]  Denmark, S.E. and Beutner, G.L. (2008) Lewis Base Catalysis in Organic Synthesis. Angewandte Chemie International Edition, 47, 1560-1638.
https://doi.org/10.1002/anie.200604943
[34]  Denmark, S.E., Kuester, W.E. and Burk, M.T. (2012) Catalytic, Asymmetric Halofunctionalization of Alkenes-Acritical Perspective. Angewandte Chemie International Edition, 51, 10938-10953.
https://doi.org/10.1002/anie.201204347
[35]  Maddox, S.M., Nalbandian, C.J., Smith, D.E. and Gustafson, J.L. (2015) A Practical Lewis Base Catalyzed Electrophilic Chlorination of Arenes and Heterocycles. Organic Letters, 17, 1042-1045.
https://doi.org/10.1021/acs.orglett.5b00186
[36]  Wilkie, C.A. and Dimme, D.R. (1972) N-Chloro-N-Lithioaniline. Generation and Characterization of a Nitrenoid. Journal of the American Chemical Society, 94, 8600 - 8601.
https://doi.org/10.1021/ja00779a063
[37]  Samanta, R.C. and Yamamoto, H. (2015) Selective Halogenation Using an Aniline Catalyst. Chemistry—A European Journal, 21, 11976-11979.
https://doi.org/10.1002/chem.201502234
[38]  Yang, Z., Yang, S. and Xu, J.S. (2017) Sulfur-Directed Metal-Free and Regiospecific Methyl C(sp3)-H Imidation of Thioanisoles. Tetrahedron, 73, 3240-3248.
https://doi.org/10.1016/j.tet.2017.04.054
[39]  Shi, Y., Ke, Z. and Yeung, Y.-Y. (2018) Environmentally Benign Indole-Catalyzed Position-Selective Halogenation of Thioarenes and Other Aromatics. Green Chemistry, 20, 4448-4452.
https://doi.org/10.1039/C8GC02415D
[40]  Iida, K., Ishida, S., Watanabe, T. and Arai, T. (2019) Disulfide-Catalyzed Iodination of Electron-Rich Aromatic Compounds. The Journal of Organic Chemistry, 84, 7411-7417.
https://doi.org/10.1021/acs.joc.9b00769
[41]  Gribble, G.W. (2004) Natural Organohalogens: A New Frontier for Medicinal Agents. Journal of Chemical Education, 81, 1441-1449.
https://doi.org/10.1021/ed081p1441
[42]  Tang, M.L. and Bao, Z. (2011) Halogenated Materials as Organic Semiconductors. Chemistry of Materials, 23, 446-455.
https://doi.org/10.1021/cm102182x
[43]  Auffinger, P., Hays, F.A., Westhof, E. and Ho, P.S. (2004) Halogen Bonds in Biological Molecules. Proceedings of the National Academy of Sciences of the United States of America, 48, 16789-16794.
https://doi.org/10.1073/pnas.0407607101
[44]  Hernandes, M.Z., Cavalcanti, S.M., Moreira, D.R., de Azevedo Junior, W.F. and Leite, A.C. (2010) Halogen Atoms in the Modern Medicinal Chemistry: Hints for the Drug Design. Current Drug Targets, 11, 303-314.
https://doi.org/10.2174/138945010790711996
[45]  Cernak, T., Dykstra, K.D., Tyagarajan, S., Vachal, P. and Krska, S.W. (2016) The Medicinal Chemist’s Toolbox for Late Stage Functionalization of Drug-Like Molecules. Chemical Society Reviews, 45, 546-576.
https://doi.org/10.1039/C5CS00628G
[46]  Wencel-Delord, J. and Glorius, F. (2013) C-H Bond Activation Enables the Rapid Construction and Late-Stage Diversification of Functional Molecules. Nature Chemistry, 5, 369-375.
https://doi.org/10.1038/nchem.1607
[47]  Yamamoto, K., Li, J., Garber, J.A.O., Rolfes, J.D., Boursalian, G.B., Borghs, J.C., Genicot, C., Jacq, J., van Gastel, M., Neese, F. and Ritter, T. (2018) Palladium-Catalysed Electrophilic Aromatic C-H Fluorination. Nature, 554, 511-514.
https://doi.org/10.1038/nature25749
[48]  Song, S., Li, X., Wei, J., Wang, W., Zhang, Y., Ai, L., Zhu, Y., Shi, X., Zhang, X. and Jiao, N. (2019) DMSO-Catalysed Late-Stage Chlorination of (hetero)arenes. Nature Catalysis, 3, 107-115.
https://doi.org/10.1038/s41929-019-0398-0
[49]  Cresswell, A.J., Eey, S.T.-C. and Denmark, S.E. (2015) Catalytic, Stereospecific Syn-Dichlorination of Alkenes. Nature Chemistry, 7, 146-152.
https://doi.org/10.1038/nchem.2141
[50]  Samanta, R.C. and Yamamoto, H. (2017) Catalytic Asymmetric Bromocyclization of Polyenes. Journal of the American Chemical Society, 139, 1460-1463.
https://doi.org/10.1021/jacs.6b13193
[51]  Sakakura, A., Ukai, A. and Ishihara, K. (2007) Enantioselective Halocyclization of Polyprenoids Induced by Nucleophilic Phosphoramidites. Nature, 445, 900-903.
https://doi.org/10.1038/nature05553
[52]  Zhang, Q.-W., Li, D., Li, X., White, P.B., Mecinovic, J., Ma, X., ?gren, H., Nolte, R.J.M. and Tian, H. (2016) Multicolor Photoluminescence Including White-Light Emission by a Single Host-Guest Complex. Journal of the American Chemical Society, 138, 13541-13550.
https://doi.org/10.1021/jacs.6b04776
[53]  Narute, S., Parnes, R., Toste, F.D. and Pappo, D. (2016) Enantioselective Oxidative Homocoupling and Cross Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. Journal of the American Chemical Society, 138, 16553-16560.
https://doi.org/10.1021/jacs.6b11198
[54]  Nishii, Y., Ikeda, M., Hayashi, Y., Kawauchi, S. and Miura, M. (2020) Triptycenyl Sulfide: A Practical and Active Catalyst for Electrophilic Aromatic Halogenation Using N-Halosuccinimides. Journal of the American Chemical Society, 142, 1621-1629.
https://doi.org/10.1021/jacs.9b12672
[55]  Xu, H., Hu, L., Zhu, G., Zhu, Y., Wang, Y., Wu, Z.G., Zi, Y. and Huang, W. (2022) DABCO as a Practical Catalyst for Aromatic Halogenation with N-Halosuccinimides. RSC Advances, 12, 7115-7119.
https://doi.org/10.1039/D2RA00197G
[56]  Bovonsombat, P., Leykajarakul, J., Khan, C., Pla-On, K., Krause, M.M., Khanthapura, P., Ali, R. and Doowa, N. (2009) Regioselective Iodination of Phenol and Analogues Using N-Iodosuccinimide and P-Toluenesulfonic Acid. Tetrahedron Letters, 50, 2664-2667.
https://doi.org/10.1016/j.tetlet.2009.03.128
[57]  Rogers, D.A., Hopkins, M.D., Rajagopal, N., Varshney, D., Howard, H.A., LeBlanc, G. and Lamar, A.A. (2020) U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics. ACS Omega, 5, 7693-7704.
https://doi.org/10.1021/acsomega.0c00631
[58]  Bergstr?m, M., Suresh, G., Naidu, V.R. and Unelius, C.R. (2017) N-iodosuccinimide (NIS) in Direct Aromatic Iodination. European Journal of Organic Chemistry, 2017, 3234-3239.
https://doi.org/10.1002/ejoc.201700173
[59]  Tang, R.-J., Milcent, T. and Crousse, B. (2017) Hexafluoro-2-Propanol Promotes Para-Selective C-H Amination of Free Anilines with Azodicarboxylates. European Journal of Organic Chemistry, 32, 4753-4757.
https://doi.org/10.1002/ejoc.201700794
[60]  Vukovic, V.D., Richmond, E., Wolf, E. and Moran, J. (2017) Catalytic Friedel-Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols. Angewandte Chemie International Edition, 56, 3085-3089.
https://doi.org/10.1002/anie.201612573
[61]  Laurence, C., Legros, J., Chantzis, A., Planchat, A. and Jacquemin, D. (2015) A Database of Dispersion-Induction DI, Electrostatic ES, and Hydrogen Bonding α1 and β1 Solvent Parameters and Some Applications to the Multiparameter Correlation Analysis of Solvent Effects. The Journal of Physical Chemistry B, 119, 3174-3184.
https://doi.org/10.1021/jp512372c
[62]  Gennen, S., Alves, M., Mereau, R., Tassaing, T., Gilbert, B., Detrembleur, C., Jerome, C. and Grignard, B. (2015) Fluorinated Alcohols as Activators for the Solvent-Free Chemical Fixation of Carbon Dioxide into Epoxides. ChemSusChem, 8, 1845-1849.
https://doi.org/10.1002/cssc.201500103
[63]  Tang, R.J., Milcent, T. and Crousse, B. (2018) Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. The Journal of Organic Chemistry, 83, 930-938.
https://doi.org/10.1021/acs.joc.7b02920
[64]  Bora, U., Bose, G., Chaudhuri, M.K., Dhar, S.S., Gopinath, R., Khan, A.T. and Patel, B.K. (2000) Regioselective Bromination of Organic Substrates by Tetrabutylammonium Bromide Promoted by V2O5-H2O2:? An Environmentally Favorable Synthetic Protocol. Organic Letters, 2, 247-249.
https://doi.org/10.1021/ol9902935
[65]  Smith, M.B., Guo, L., Okeyo, S., Stenzel, J., Yanella, J. and Lachapelle, E. (2002) Regioselective One-Pot Bromination of Aromatic Amines. Organic Letters, 4, 2321-2323.
https://doi.org/10.1021/ol0259600
[66]  Toda, F. and Schmeyers, J. (2003) Selective Solid-State Brominations of Anilines and Phenols. Green Chemistry, 5, 701-703.
https://doi.org/10.1039/b306612f
[67]  Hajipour, A.R., Arbabian, M. and Ruoho, A.E. (2002) Tetramethylammonium Dichloroiodate:? An Efficient and Environmentally Friendly Iodination Reagent for Iodination of Aromatic Compounds under Mild and Solvent-Free Conditions. The Journal of Organic Chemistry, 67, 8622-8624.
https://doi.org/10.1021/jo0264628
[68]  Wang, M., Zhang, Y., Wang, T., Wang, C., Xue, D. and Xiao, J. (2016) Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one. Organic Letters, 18, 1976-1979.
https://doi.org/10.1021/acs.orglett.6b00547
[69]  Snieckus, V. (1990) Directed Ortho Metalation. Tertiary Amide and O-carbamate Directors in Synthetic Strategies for Polysubstituted Aromatics. Chemical Reviews, 90, 879-933.
https://doi.org/10.1021/cr00104a001
[70]  Wan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. and Shi, Z. (2006) Highly Selective C-H Functionalization/Halogenation of Acetanilide. Journal of the American Chemical Society, 128, 7416-7417.
https://doi.org/10.1021/ja060232j
[71]  Bedford, R.B., Haddow, M.F., Mitchell, C.J. and Webster, R.L. (2011) Mild C-H Halogenation of Anilides and the Isolation of an Unusual Palladium(I)-Palladium(II) Species. Angewandte Chemie International Edition, 50, 55245527.
https://doi.org/10.1002/anie.201101606
[72]  Schr?der, N., Delord, J.W. and Glorius, F. (2012) High-Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho Bromination and Iodination of Arenes. Journal of the American Chemical Society, 134, 8298-8301.
https://doi.org/10.1021/ja302631j
[73]  Moghaddam, F.M., Tavakoli, G., Saeednia, B., Langer, P. and Jafari, B. (2016) Palladium-Catalyzed Carbamate-Directed Regioselective Halogenation: Aroute to Halogenated Anilines. The Journal of Organic Chemistry, 81, 3868-3876.
https://doi.org/10.1021/acs.joc.6b00329
[74]  Xiong, X. and Yeung, Y.-Y. (2016) Highlyortho-Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst. Angewandte Chemie International Edition, 55, 16101-16105.
https://doi.org/10.1002/anie.201607388
[75]  Xiong, X. and Yeung, Y.-Y. (2018) Ammonium Salt-Catalyzed Highly Practical Ortho-Selective Monohalogenation and Phenylselenation of Phenols: Scope and Applications. ACS Catalysis, 8, 4033-4043.
https://doi.org/10.1021/acscatal.8b00327
[76]  Trifonov, A.L., Panferova, L.I., Levin, V.V., Kokorekin, V.A. and Dilman, A.D. (2020) Visible-Light-Promoted Iododifluoromethylation of Alkenes via (Phosphonio)difluoromethyl Radical Cation. Organic Letters, 22, 2409-2413.
https://doi.org/10.1021/acs.orglett.0c00604
[77]  Pan, S., Jiang, M., Hu, J., Xu, R., Zeng, X. and Zhong, G. (2020) Synthesis of 1,2-Amino Alcohols by Decarboxylative Coupling of Amino Acid Derived α-Amino Radicals to Carbonyl Compounds via Visible-Light Photocatalyst in Water. Green Chemistry, 22, 336-341.
https://doi.org/10.1039/C9GC03470F
[78]  Lei, T., Liang, G., Cheng, Y.Y., Chen, B., Tung, C.H. and Wu, L.Z. (2020) Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Organic Letters, 22, 5385-5389.
https://doi.org/10.1021/acs.orglett.0c01709
[79]  Nicewicz, D.A. and Nguyen, T.M. (2014) Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. ACS Catalysis, 4, 355-360.
https://doi.org/10.1021/cs400956a
[80]  Joshi-Pangu, A., Levesque, F., Roth, H.G., Oliver, S.F., Campeau, L.-C., Nicewicz, D. and Di Rocco, D.A. (2016) Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis. The Journal of Organic Chemistry, 81, 7244-7249.
https://doi.org/10.1021/acs.joc.6b01240
[81]  Romero, N.A. and Nicewicz, D.A. (2016) Organic Photoredox Catalysis. Chemical Reviews, 116, 10075-10166.
https://doi.org/10.1021/acs.chemrev.6b00057
[82]  Rogers, D.A., Gallegos, J.M., Hopkins, M.D., Lignieres, A.A., Pitzel, A.K. and Lamar, A.A. (2019) Visible-Light Photocatalytic Activation of N-Chlorosuccinimide by Organic Dyes for the Chlorination of Arenes and Heteroarenes. Tetrahedron, 75, 130498-130505.
https://doi.org/10.1016/j.tet.2019.130498

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133