|
基于时序哨兵1号数据的黑龙港流域农作物类别精细提取研究
|
Abstract:
针对光学遥感数据容易受云、雨等天气影响的不足,本文以黑龙港典型区域为实验区,基于随机森林分类方法探索了采用哨兵1号时序雷达数据为数据源进行农作物精细分类。结果表明:1) Senti-nel-1雷达数据受云、雨等天气状况的影响较小,因此能够构建更加完整的特征曲线以反映农作物生长信息;2) 利用Sentienl-1数据提取VH、VV极化时序数据和纹理特征并构建多种分类方案,其中多时相VH、VV双极化时序数据分类精度最高,纹理特征数据的加入并没有明显提高分类精度。
In view of the vulnerability of optical remote sensing data is impacted by weather conditions such as clouds and rain, this article takes the typical area of Heilonggang as the experimental area and explores the use of Sentinel-1 time series radar data as the data source for crop fine classification based on random forest classification method. The results show that: 1) Sentinel-1 radar data is less affected by weather conditions such as clouds and rain, so it can construct more complete feature curves to reflect crop growth information, which has great application value in extracting crop planting structure in the experimental area; 2) Using Sentienl-1 data to extract VH and VV polarization time series data and texture features and construct a variety of classification schemes, the results show that the multi-phase VH and VV dual polarization time series data have the highest classification accuracy, and the addition of texture feature data does not significantly improve the classification accuracy.
[1] | 陈百明. 未来中国的农业资源综合生产能力与食物保障[J]. 地理研究, 2002, 21(3): 294-304. |
[2] | Becker-Reshef, I., Vermote, E., Lindeman, M. and Justice, G. (2010) A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data. Remote Sensing of Environment, 114, 1312-1323.
https://doi.org/10.1016/j.rse.2010.01.010 |
[3] | 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767. |
[4] | Boryan, C., Yang, Z., Mueller, R. and Craig, M. (2011) Monitoring US Ag-riculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto International, 26, 341-358.
https://doi.org/10.1080/10106049.2011.562309 |
[5] | 刘跃辰, 王飞, 焦为杰, 等. “高分一号”卫星数据在冬小麦种植结构调整实施效果评估中的应用——以河北省冀州市为例[J]. 中国农业资源与区划, 2017, 38(2): 1-9+19. |
[6] | 郑利娟. 基于高分一/六号卫星影像特征的农作物分类研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2017. |
[7] | 贾玉秋, 李冰, 程永政, 等. 基于GF-1与Landsat-8多光谱遥感影像的玉米LAI反演比较[J]. 农业工程学报, 2015, 31(9): 173-179. |
[8] | Csillik, O., Belgiu, M., Asner, G.P. and Kelly, M. (2019) Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2. Remote Sensing, 11, Article 1257. https://doi.org/10.3390/rs11101257 |
[9] | 甄晓菊, 张雪红, 吴国明, 等. 基于Sentinel-2A NDVI时间序列数据的冬小麦识别[J]. 江苏农业科学, 2019, 47(16): 239-245. |
[10] | 杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019, 21(5): 740-751. |
[11] | 吴静, 吕玉娜, 李纯斌, 等. 基于多时相Sentinel-2A的县域农作物分类[J]. 农业机械学报, 2019, 50(9): 194-200. |
[12] | 赵其国, 沈仁芳, 滕应, 等. 我国地下水漏斗区耕地轮作休耕制度试点成效及对策建议[J]. 土壤, 2018, 50(1): 1-6. |
[13] | 雷震. 随机森林及其在遥感影像处理中应用研究[D]: [博士学位论文]. 上海: 上海交通大学, 2012. |