全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

闭环动态古诺垄断博弈的γ-核
The γ-Core of Dynamic Cournot Oligopoly Games with Closed-Loop Information

DOI: 10.12677/PM.2023.1312350, PP. 3371-3379

Keywords: 微分博弈,古诺垄断,闭环信息,特征函数,γ-核
Differential Game
, Cournot Oligopoly, Closed-Loop Information, Characteristic Function, γ-Core

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究具有闭环(无记忆)信息的效用可转移动态古诺垄断博弈的γ-核心解。基于合作微分博弈框架,运用Pontryagin极大值原理,获得了闭环信息的γ-特征函数,并进一步证明γ-核非空。数值例子表明,与开环信息相比,闭环信息不能带来真子联盟γ-特征函数值的一致严格变大或变小;但闭环信息对γ-核存在性的影响是鲁棒的。
This paper investigates the γ-core for the transferable-utility dynamic Cournot oligopoly game with closed-loop (memoryless) information. Based on the cooperative differential game and the Pontryagin maximum principle, we obtain the γ-characteristic function and further prove the non-emptiness of γ-core. Numerical example shows that compared to the open-loop information, the closed-loop information cannot bring the γ-characteristic function values of any proper coalition uniformly increasing or decreasing. But the impact of closed-loop information is robust for the non-emptiness of γ-core.

References

[1]  Shapley, L. (1955) Markets as Cooperative Games. Rand Corporation Papers.
[2]  Gillies, D. (1959) Solutions to General Non-Zero Sum Games. In: Tucker, A.W. and Luce, R.D. Eds., Contributions to the Theory of Games (AM-40), Volume IV, Princeton University Press, Princeton, 47-86.
https://doi.org/10.1515/9781400882168-005
[3]  von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic Behavior. Princeton University Press, Princeton.
[4]  Edge Worth, F.Y. (1881) Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences.
https://econpapers.repec.org/RePEc:hay:hetboo:edgeworth1881
[5]  Aumann, R. (1959) Acceptable Points in General Cooperative N-Person Games. In: Tucker, A. and Luce, D., Eds., Contributions to the Theory of Games IV, Annals of Mathematics Studies (Vol. 40), Princeton University Press, Princeton, 287-324.
https://doi.org/10.1515/9781400882168-018
[6]  Scarf, H. (1971) On the Existence of a Cooperative Solution for a General Class of N-Person Games. Journal of Economic Theory, 3, 169-181.
https://doi.org/10.1016/0022-0531(71)90014-7
[7]  Shapley, L. (1973) On Balanced Games without Side Pay-ments. In: Hu, T.C. and Robinson, S.M., Eds., Mathematical Programming, Academic Press, New York, 261-290.
https://doi.org/10.1016/B978-0-12-358350-5.50012-9
[8]  Hart, S. and Kurz, M. (1983) Endogenous Formation of Coalitions. Econometrica, 51, 1047-1064.
https://doi.org/10.2307/1912051
[9]  Shapley, L. (1967) On Balanced Sets and Cores. Naval Research Logistics Quarterly, 14, 453-560.
https://doi.org/10.1002/nav.3800140404
[10]  Zhao, J. (1999) The Existence of TU α-Core in Norm Form Games. International Journal of Game Theory, 28, 25-34.
https://doi.org/10.1007/s001820050096
[11]  Zhao, J. (1999b) A β-Core Existence Result and Its Application to Oligopoly Markets. Games and Economic Behavior, 27, 153-168.
https://doi.org/10.1006/game.1998.0654
[12]  Chander, P. and Tulkens, H. (1997) The Core of an Economy with Multilateral Environmental Externalities. International Journal of Game Theory, 26, 379-401.
https://doi.org/10.1007/BF01263279
[13]  Zhao, J. (2018) TU Oligopoly Games and Industrial Cooperation. Handbook of Game Theory and Industrial Organization, 1, 392-422.
https://doi.org/10.4337/9781785363283.00022
[14]  Yong, J. (2004) Horizontal Monopolization via Alliances. Working Paper, Melbourne Institute of Applied Economic and Social Research, Parkville, University of Mel-bourne.
[15]  Lekeas, P. (2013) Coalitional Beliefs in Cournot Oligopoly TU-Games. International Game Theory Re-view, 15, Article ID: 1350004.
https://doi.org/10.1142/S0219198913500047
[16]  Currarini, S. and Marini, M. (2003) A Sequential Approach to the Characteristic Function and the Core in Games with Externalities. In: Sertel, M. and Kara, A., Eds., Advances in Economic Design, Springer Verlag, Berlin, 233-249.
https://doi.org/10.1007/978-3-662-05611-0_14
[17]  Basar, T. and Olsder, G.J. (1999) Classics in Applied Mathematics: Dynamic Noncooperative Game Theory, 2nd Edition. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611971132
[18]  Dockner, E., J?rgensen, S., Long, N. and Sorger, G. (2000) Dif-ferential Games in Economics and Management Science. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511805127
[19]  Haurie, A., Krawczyk, J. and Zaccour, G. (2012) Games and Dynamic Games. World Scientific, Singapore.
https://doi.org/10.1142/8442
[20]  Wang, L. and Zhao, J. (2023) The Core in an N-firm Dynamic Cournot Oli-gopoly. Qingdao University, Qingdao.
[21]  Roos, C.F. (1925) A Mathematical Theory of Competition. American Journal of Mathematics, 47, 163-175.
https://doi.org/10.2307/2370550
[22]  Fershtman, C. and Kamien, M. (1987) Dynamic Duopolistic Competition with Sticky Prices. Econometrica, 55, 1151-1164.
https://doi.org/10.2307/1911265
[23]  Dockner, E.J. (1988) On the Relation between Dynamic Oligopolistic Competition and Long-Run Competitive Equilibrium. European Journal of Political Economy, 4, 47-64.
https://doi.org/10.1016/S0176-2680(88)80016-8
[24]  Cellini, R. and Lambertini, L. (2004) Dynamic Oligopoly with Sticky Prices: Closed-Loop, Feedback and Open-Loop Solutions. Journal of Dynamical and Control Systems, 10, 303-314.
https://doi.org/10.1023/B:JODS.0000034432.46970.64
[25]  Hoof, S. (2021) Dynamic Monopolistic Competition: A Steady-State Analysis. Journal of Optimization Theory and Applications, 189, 560-577.
https://doi.org/10.1007/s10957-021-01843-w
[26]  Reinganum, J.F. and Stokey, N. (1985) Oligopoly Extraction of a Common Property: The Importance of the Period of Commitment in Dynamic Games. International Economic Review, 26, 161-173.
https://doi.org/10.2307/2526532
[27]  Mehlmann, A. (1988) Applied Differential Games. Plenum Press, New York.
https://doi.org/10.1007/978-1-4899-3731-5
[28]  Selten, R. (1975) Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games. International Journal of Game Theory, 4, 25-55.
https://doi.org/10.1007/BF01766400
[29]  Esfahani, H. (2019) Profitability of Horizontal Mergers in the Presence of Price Stickiness. European Journal of Operational Research, 279, 941-950.
https://doi.org/10.1016/j.ejor.2019.06.038
[30]  Moulin, H. (1981) Théorie des jeux pour l’économie et la politique. Hermann.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133