|
Pure Mathematics 2023
闭环动态古诺垄断博弈的γ-核
|
Abstract:
本文研究具有闭环(无记忆)信息的效用可转移动态古诺垄断博弈的γ-核心解。基于合作微分博弈框架,运用Pontryagin极大值原理,获得了闭环信息的γ-特征函数,并进一步证明γ-核非空。数值例子表明,与开环信息相比,闭环信息不能带来真子联盟γ-特征函数值的一致严格变大或变小;但闭环信息对γ-核存在性的影响是鲁棒的。
This paper investigates the γ-core for the transferable-utility dynamic Cournot oligopoly game with closed-loop (memoryless) information. Based on the cooperative differential game and the Pontryagin maximum principle, we obtain the γ-characteristic function and further prove the non-emptiness of γ-core. Numerical example shows that compared to the open-loop information, the closed-loop information cannot bring the γ-characteristic function values of any proper coalition uniformly increasing or decreasing. But the impact of closed-loop information is robust for the non-emptiness of γ-core.
[1] | Shapley, L. (1955) Markets as Cooperative Games. Rand Corporation Papers. |
[2] | Gillies, D. (1959) Solutions to General Non-Zero Sum Games. In: Tucker, A.W. and Luce, R.D. Eds., Contributions to the Theory of Games (AM-40), Volume IV, Princeton University Press, Princeton, 47-86.
https://doi.org/10.1515/9781400882168-005 |
[3] | von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic Behavior. Princeton University Press, Princeton. |
[4] | Edge Worth, F.Y. (1881) Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. https://econpapers.repec.org/RePEc:hay:hetboo:edgeworth1881 |
[5] | Aumann, R. (1959) Acceptable Points in General Cooperative N-Person Games. In: Tucker, A. and Luce, D., Eds., Contributions to the Theory of Games IV, Annals of Mathematics Studies (Vol. 40), Princeton University Press, Princeton, 287-324. https://doi.org/10.1515/9781400882168-018 |
[6] | Scarf, H. (1971) On the Existence of a Cooperative Solution for a General Class of N-Person Games. Journal of Economic Theory, 3, 169-181. https://doi.org/10.1016/0022-0531(71)90014-7 |
[7] | Shapley, L. (1973) On Balanced Games without Side Pay-ments. In: Hu, T.C. and Robinson, S.M., Eds., Mathematical Programming, Academic Press, New York, 261-290. https://doi.org/10.1016/B978-0-12-358350-5.50012-9 |
[8] | Hart, S. and Kurz, M. (1983) Endogenous Formation of Coalitions. Econometrica, 51, 1047-1064.
https://doi.org/10.2307/1912051 |
[9] | Shapley, L. (1967) On Balanced Sets and Cores. Naval Research Logistics Quarterly, 14, 453-560.
https://doi.org/10.1002/nav.3800140404 |
[10] | Zhao, J. (1999) The Existence of TU α-Core in Norm Form Games. International Journal of Game Theory, 28, 25-34.
https://doi.org/10.1007/s001820050096 |
[11] | Zhao, J. (1999b) A β-Core Existence Result and Its Application to Oligopoly Markets. Games and Economic Behavior, 27, 153-168. https://doi.org/10.1006/game.1998.0654 |
[12] | Chander, P. and Tulkens, H. (1997) The Core of an Economy with Multilateral Environmental Externalities. International Journal of Game Theory, 26, 379-401. https://doi.org/10.1007/BF01263279 |
[13] | Zhao, J. (2018) TU Oligopoly Games and Industrial Cooperation. Handbook of Game Theory and Industrial Organization, 1, 392-422. https://doi.org/10.4337/9781785363283.00022 |
[14] | Yong, J. (2004) Horizontal Monopolization via Alliances. Working Paper, Melbourne Institute of Applied Economic and Social Research, Parkville, University of Mel-bourne. |
[15] | Lekeas, P. (2013) Coalitional Beliefs in Cournot Oligopoly TU-Games. International Game Theory Re-view, 15, Article ID: 1350004. https://doi.org/10.1142/S0219198913500047 |
[16] | Currarini, S. and Marini, M. (2003) A Sequential Approach to the Characteristic Function and the Core in Games with Externalities. In: Sertel, M. and Kara, A., Eds., Advances in Economic Design, Springer Verlag, Berlin, 233-249.
https://doi.org/10.1007/978-3-662-05611-0_14 |
[17] | Basar, T. and Olsder, G.J. (1999) Classics in Applied Mathematics: Dynamic Noncooperative Game Theory, 2nd Edition. SIAM, Philadelphia. https://doi.org/10.1137/1.9781611971132 |
[18] | Dockner, E., J?rgensen, S., Long, N. and Sorger, G. (2000) Dif-ferential Games in Economics and Management Science. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511805127 |
[19] | Haurie, A., Krawczyk, J. and Zaccour, G. (2012) Games and Dynamic Games. World Scientific, Singapore.
https://doi.org/10.1142/8442 |
[20] | Wang, L. and Zhao, J. (2023) The Core in an N-firm Dynamic Cournot Oli-gopoly. Qingdao University, Qingdao. |
[21] | Roos, C.F. (1925) A Mathematical Theory of Competition. American Journal of Mathematics, 47, 163-175.
https://doi.org/10.2307/2370550 |
[22] | Fershtman, C. and Kamien, M. (1987) Dynamic Duopolistic Competition with Sticky Prices. Econometrica, 55, 1151-1164. https://doi.org/10.2307/1911265 |
[23] | Dockner, E.J. (1988) On the Relation between Dynamic Oligopolistic Competition and Long-Run Competitive Equilibrium. European Journal of Political Economy, 4, 47-64. https://doi.org/10.1016/S0176-2680(88)80016-8 |
[24] | Cellini, R. and Lambertini, L. (2004) Dynamic Oligopoly with Sticky Prices: Closed-Loop, Feedback and Open-Loop Solutions. Journal of Dynamical and Control Systems, 10, 303-314.
https://doi.org/10.1023/B:JODS.0000034432.46970.64 |
[25] | Hoof, S. (2021) Dynamic Monopolistic Competition: A Steady-State Analysis. Journal of Optimization Theory and Applications, 189, 560-577. https://doi.org/10.1007/s10957-021-01843-w |
[26] | Reinganum, J.F. and Stokey, N. (1985) Oligopoly Extraction of a Common Property: The Importance of the Period of Commitment in Dynamic Games. International Economic Review, 26, 161-173. https://doi.org/10.2307/2526532 |
[27] | Mehlmann, A. (1988) Applied Differential Games. Plenum Press, New York.
https://doi.org/10.1007/978-1-4899-3731-5 |
[28] | Selten, R. (1975) Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games. International Journal of Game Theory, 4, 25-55. https://doi.org/10.1007/BF01766400 |
[29] | Esfahani, H. (2019) Profitability of Horizontal Mergers in the Presence of Price Stickiness. European Journal of Operational Research, 279, 941-950. https://doi.org/10.1016/j.ejor.2019.06.038 |
[30] | Moulin, H. (1981) Théorie des jeux pour l’économie et la politique. Hermann. |