全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

群智感知网络中轨迹隐私保护方法安全性分析
Security Analysis of Trajectory Privacy Protection Methods in Crowdsensing Networks

DOI: 10.12677/SEA.2023.126080, PP. 826-831

Keywords: 轨迹隐私,隐私保护方法,群智感知
Trajectory Privacy
, Privacy Protection Methods, Crowdsensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着科技与经济的快速发展和移动智能设备层出不穷极大地推动了群智感知(Crowdsensing, CS)网络的发展。其中,轨迹隐私保护方法是群智感知隐私保护研究的热点问题,虽然轨迹隐私保护方法多样,但在具有大规模参与者的群智感知网络中仍存在隐私保护不当的问题。因此,本文对群智感知轨迹隐私保护方法的安全性进行分析,对研究者开展群智感知轨迹隐私保护研究具有重要意义。首先,本文对群智感知轨迹隐私保护面临的安全问题进行详细的阐述。接着归纳总结了现有群智感知轨迹隐私保护方法包括假数据、匿名、抑制和扰动等方法的研究现状和存在的问题。最后,对群智感知轨迹隐私保护方法未来研究方向总结与展望。
With the rapid development of technology and economy and the emergence of mobile intelligent devices, the development of crowdsensing networks has been greatly promoted. Among them, trajectory privacy protection methods are a hot topic in the research of crowdsensing privacy protection. Although there are various methods for trajectory privacy protection, there is still a problem of improper privacy protection in crowdsensing networks with large-scale participants. Therefore, this paper analyzes the security of the trajectory privacy protection methods of crowdsensing, which is of great significance for researchers to conduct research on the trajectory privacy protection of crowdsensing. Firstly, this article provides a detailed explanation of the security issues faced by the privacy protection of crowdsensing trajectories. Then, the research status and existing problems of existing crowdsensing trajectory privacy protection methods, including false data, anonymity, suppression, and perturbation methods, were summarized and summarized. Finally, a summary and outlook on the future research directions of crowdsensing trajectory privacy protection methods.

References

[1]  Zhang, J., Yang, F., Ma, Z., et al. (2020) A Decentralized Location Privacy-Preserving Spatial Crowdsourcing for Internet of Vehicles. IEEE Transactions on Intelligent Transportation Systems, 22, 2299-2313.
https://doi.org/10.1109/TITS.2020.3010288
[2]  熊金波, 毕仁万, 田有亮, 刘西蒙, 马建峰. 移动群智感知安全与隐私: 模型、进展与趋势[J]. 计算机学报, 2021, 44(9): 1949-1966.
[3]  李利, 何欣, 韩志杰. 群智感知的隐私保护研究综述[J]. 计算机科学, 2022, 49(5): 303-310.
[4]  Li, S., Shen, H. and Sang, Y. (2020) A Survey of Privacy-Preserving Techniques on Trajectory Data. In: Shen, H., Sang, Y., Eds., Parallel Architectures, Algorithms and Programming. Springer, Cham, 461-476.
https://doi.org/10.1007/978-981-15-2767-8_41
[5]  You, T.H., Peng, W.C. and Lee, W.C. (2007) Protecting Moving Trajectories with Dummies. 2007 International Conference on Mobile Data Management, Mannheim, 1 May 2007, 278-282.
https://doi.org/10.1109/MDM.2007.58
[6]  Dai, J. and Hua, L. (2015) A Method for the Trajectory Privacy Protection Based on the Segmented Fake Trajectory under Road Networks. 2015 2nd International Conference on Information Science and Control Engineering, Shanghai, 24-26 April 2015, 13-17.
https://doi.org/10.1109/ICISCE.2015.12
[7]  刘向宇, 陈金梅, 夏秀峰, 等. 防止暴露位置攻击的轨迹隐私保护[J]. 计算机应用, 2020, 40(2): 479-485.
[8]  李凤云, 郭昊, 毕远国, 等. 基于路径混淆的实时轨迹隐私保护方法[J/OL]. 计算机工程与应用, 2023: 1-8.
https://kns.cnki.net/kcms/detail/11.2127.TP.20221108.1458.006.html
[9]  Tan, R., Tao, Y., Si, W., et al. (2020) Privacy Preserving Semantic Trajectory Data Publishing for Mobile Location-Based Services. Wireless Networks, 26, 5551-5560.
https://doi.org/10.1007/s11276-019-02058-8
[10]  Chen, H., Li, S. and Zhang, Z. (2020) A Differential Privacy Based (k-ψ)-Anonymity Method for Trajectory Data Publishing. Computers, Materials & Continua, 65, 2665-2685.
https://doi.org/10.32604/cmc.2020.010965
[11]  宋成, 程道晨, 倪水平. 个性化差分隐私的k匿名轨迹隐私保护方案[J]. 北京邮电大学学报, 2023, 46(3): 109-114.
[12]  Gao, Z., Huang, Y., Zheng, L., et al. (2022) Protecting Location Privacy of Users Based on Trajectory Obfuscation in Mobile Crowdsensing. IEEE Transactions on Industrial Informatics, 18, 6290-6299.
https://doi.org/10.1109/TII.2022.3146281
[13]  Lan, W., Lin, Y., Bao, L., et al. (2020) Trajectory-Differential Privacy-Protection Method with Interest Region. Journal of Frontiers of Computer Science & Technology, 14, 59-72.
[14]  汪逸飞, 罗永龙, 俞庆英, 刘晴晴, 陈文. 基于信息熵抑制的轨迹隐私保护方法[J]. 计算机应用, 2018, 38(11): 3252-3257.
[15]  吴云乘, 陈红, 赵素云, 梁文娟, 吴垚, 李翠平, 张晓莹. 一种基于时空相关性的差分隐私轨迹保护机制[J]. 计算机学报, 2018, 41(2): 309-322.
[16]  刘凯, 韩益亮, 郭凯阳, 吴日铭, 汪晶晶. 基于密度的噪声应用空间聚类算法的差分隐私轨迹保护机制[J]. 科学技术与工程, 2022, 22(25): 11091-11096.
[17]  李洪涛, 任晓宇, 王洁, 等. 基于差分隐私的连续位置隐私保护机制[J]. 通信学报, 2021, 42(8): 164-175.
[18]  陈思, 付安民, 苏铓, 孙怀江. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021, 42(9): 54-64.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133