全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合三支决策的预测式容器伸缩优化策略
Predictive Container Scaling Optimization Strategy Integrating Three-Way Decisions

DOI: 10.12677/SEA.2023.126077, PP. 793-809

Keywords: 负载预测,容器,三支决策,伸缩策略
Load Forecasting
, Container, Three-Way Decisions, Scaling Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前Kubernetes中基于固定阈值的响应式伸缩策略存在无法根据集群负载动态调整扩缩容力度以及存在的时间滞后性等突出性问题。针对该问题,利用负载预测模型在检测实时工作负载的同时对未来的工作负载进行预测,同时,根据历史负载变化情况并结合三支决策对负载波动进行三分,即低负载波动期、正常负载波动期、高负载波动期,针对每一种负载波动期,对伸缩力度进行细粒化,最后基于负载波动期和预测的CPU利用率执行相应的容器伸缩决策。通过对比Kubernetes原生算法和同类算法,所提出的伸缩优化策略能够有效地应对负载波动,降低SLA违约率,在保证QoS的同时降低了资源的浪费。
The current responsive scaling strategy based on fixed thresholds in Kubernetes has outstanding problems such as the inability to dynamically adjust the expansion and contraction intensity according to the cluster load and the existence of time lag. To address this problem, the load prediction model is used to predict future workloads while detecting real-time workloads. At the same time, load fluctuations are divided into three categories based on historical load changes and three decisions, namely, low load fluctuation period and normal load. During the fluctuation period and high load fluctuation period, the scaling intensity is fine-grained for each load fluctuation period, and finally the corresponding container scaling decision is executed based on the load fluctuation period and the predicted CPU utilization. By comparing the Kubernetes native algorithm and similar algorithms, the proposed scaling optimization strategy can effectively cope with load fluctuations, reduce SLA default rates, and reduce resource waste while ensuring QoS.

References

[1]  冷海涛, 马思思. 虚拟化技术在云计算中的应用及平台架构探索[J]. 中国管理信息化, 2022, 25(21): 176-178.
[2]  Felter, W., Ferreira, A., Rajamony, R., et al. (2015) An Updated Performance Comparison of Virtual Machines and Linux Containers. 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, 29-31 March 2015, 171-172.
https://doi.org/10.1109/ISPASS.2015.7095802
[3]  武志学. 云计算虚拟化技术的发展与趋势[J]. 计算机应用, 2017, 37(4): 915-923.
[4]  郭雷, 毛玲燕. 基于Kubernetes的企业级容器云平台设计与实践[J]. 信息技术与标准化, 2022(9): 73-77.
[5]  耿伟, 周起如, 眭小红, 谷国栋, 赵瑜. 基于排队理论的容器云弹性伸缩策略研究[J]. 电脑编程技巧与维护, 2023(1): 88-90.
https://doi.org/10.16184/j.cnki.comprg.2023.01.011
[6]  孙婧, 曹兆元, 郭锦杰. 基于Docker容器自动伸缩技术的调度方法[J]. 信息化研究, 2020, 46(4): 25-31+36.
[7]  徐胜超, 熊茂华. 基于深度学习的容器云弹性伸缩方法[J]. 云南师范大学学报(自然科学版), 2021, 41(6): 21-24.
[8]  马小淋. 一种基于负载特征预测的容器云弹性伸缩策略[J]. 信息安全研究, 2019, 5(3): 236-241.
[9]  Yao, Y.Y. (2019) Tri-Level Thinking: Models of Three-Way Decision. International Journal of Machine Learning and Cybernetics, 11, 947-959.
https://doi.org/10.1007/s13042-019-01040-2
[10]  Yao, Y.Y. (2021) The Geometry of Three-Way Decision. Applied Intelligence, 51, 6298-6325.
https://doi.org/10.1007/s10489-020-02142-z
[11]  Yao, Y.Y. (2016) Three-Way Decisions and Cognitive Computing. Cognitive Computation, 8, 543-554.
https://doi.org/10.1007/s12559-016-9397-5
[12]  Yao, Y.Y. (2018) Three-Way Decision and Granular Computing. International Journal of Approximate Reasoning, 103, 107-123.
https://doi.org/10.1016/j.ijar.2018.09.005
[13]  Yao, Y.Y. (2020) Set-Theoretic Models of Three-Way Decision. Granular Computing, 6, 133-148.
https://doi.org/10.1007/s41066-020-00211-9
[14]  刘盾, 李天瑞, 杨新, 梁德翠. 三支决策-基于粗糙集与粒计算研究视角[J]. 智能系统学报, 2019, 14(6): 1111-1120.
[15]  马新宇, 黄春梅, 姜春茂. 基于三支决策的KNN渐进式文本分类方法[J]. 计算机应用研究, 2023, 40(4): 1065-1069.
https://doi.org/10.19734/j.issn.1001-3695.2022.08.0457
[16]  姚一豫, 祁建军, 魏玲. 基于三支决策的形式概念分析、粗糙集与粒计算[J]. 西北大学学报(自然科学版), 2018, 48(4): 477-487.
https://doi.org/10.16152/j.cnki.xdxbzr
[17]  胡声丹, 苗夺谦, 姚一豫. 基于三支标签传播的半监督属性约简[J]. 计算机学报, 2021, 44(11): 2332-2343.
[18]  索郎王青, 杨海龙, 姚一豫. 三元思维: 三支决策理论与实践[J]. 陕西师范大学学报(自然科学版), 2022, 50(3): 7-16.
https://doi.org/10.15983/j.cnki.jsnu.2022102
[19]  姜春茂, 王凯旋. 基于三支队列的实时云任务节能调度算法[J]. 郑州大学学报(理学版), 2019, 51(2): 66-71.
https://doi.org/10.13705/j.issn.1671-6841.2018224
[20]  徐晓霞, 姜春茂, 黄春梅. 一种基于三支决策的移动云任务节能卸载方法[J]. 南京理工大学学报, 2019, 43(4): 447-454.
https://doi.org/10.14177/j.cnki.32-1397n.2019.43.04.010
[21]  吴俊伟, 姜春茂. 负载敏感的云任务三支聚类评分调度研究[J]. 智能系统学报, 2019, 14(2): 316-322.
[22]  刘帅帅, 姜春茂. 能耗感知下云资源三支粒度调度策略研究[J]. 计算机应用研究, 2023, 40(3): 810-815.
https://doi.org/10.19734/j.issn.1001-3695.2022.07.0365
[23]  苗立尧. 基于Docker容器的混合式集群伸缩方法研究[D]: [硕士学位论文]. 西安: 西安邮电大学, 2016.
[24]  杨忠. 面向Docker容器的动态负载集群伸缩研究[J]. 舰船电子工程, 2018, 38(8): 109-115.
[25]  刘钱超, 吴利, 郑礼辉. 一种基于二次移动平均法的容器云伸缩策略[J]. 计算机技术与发展, 2019, 29(10): 15-20.
[26]  杨茂, 陈莉君. 基于Kubernetes的容器自动伸缩技术的研究[J]. 计算机与数字工程, 2019, 47(9): 2217-2220+2232.
[27]  黄芳, 闫锐, 牛金洲. 基于时序指数平滑法的冷库能耗预测模型构建[J]. 上海节能, 2023(3): 336-341.
https://doi.org/10.13770/j.cnki.issn2095-705x.2023.03.016
[28]  徐彦农, 王一帆, 王浩淳, 田辰蔚, 张兆欣, 李昕潞. 基于一次/二次指数平滑法的风功率预测方法[J]. 南方农机, 2021, 52(21): 26-28.
[29]  黄炜达, 朱维骏, 蓝映彬. 基于二次指数平滑法的能源分析预测方法[J]. 节能与环保, 2023(2): 63-65.
[30]  李钢, 陈自然, 田伟, 等. 应用二次指数平滑法的光栅信号细分方法研究[J]. 重庆理工大学学报: 自然科学, 2018, 32(2): 86-92, 236.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133