全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多关系不平衡图的图神经网络欺诈检测
Graph Neural Network Fraud Detection Based on Multi-Relation Imbalanced Graph

DOI: 10.12677/SEA.2023.126073, PP. 752-762

Keywords: 欺诈检测,多关系不平衡图,图神经网络,注意力机制
Fraud Detection
, Multi- Relation Imbalanced Graph, Graph Neural Network, Attention Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,为了挖掘图结构数据中包含的丰富的关系信息,基于图神经网络的欺诈检测方法引起了人们的广泛关注。然而,对于节点标签分布严重偏斜并且存在多种关系的图数据,传统的图神经网络可能会表现不佳。为了解决多关系不平衡图上的欺诈检测问题,本文提出了一种基于关系感知的图神经网络模型(RA-GNN)。首先,对目标节点进行基于节点相似度的Top-p邻居节点采样以改善节点标签分布不平衡问题;其次,在每种关系内部,使用节点级注意力机制,加强关键邻居节点对中心节点嵌入的影响,聚合邻居信息得到每种关系下的邻居表示;最后,使用边级注意力机制自适应地学习每种关系下邻居表示的重要性,实现关系感知的邻居信息聚合,得到中心节点的嵌入向量并应用于欺诈检测任务。在真实欺诈检测数据集YelpChi和Amazon上的实验结果表明,本文提出的RA-GNN模型与其他基于图神经网络的基线模型相比具有良好的欺诈检测性能,并且所使用的核心模块有显著的增强效果。
In recent years, fraud detection methods based on graph neural networks have attracted much attention due to the rich relational information contained in graph-structured data. However, for graph data with severely skewed node label distribution and multiple relationships, traditional graph neural networks may perform poorly. In order to solve the fraud detection problem on multi-relationship unbalanced graphs, this paper proposes a relationship-aware graph neural network-based model (RA-GNN). First, Top-p neighbor node sampling based on node similarity is performed on target nodes to improve the problem of imbalanced node label distribution; second, within each relationship, a node-level attention mechanism is used to enhance the influence of key neighbor nodes on the central node embedding, and aggregate neighbor information to obtain neighbor representation under each relationship; Finally, an edge-level attention mechanism is used to adaptively learn the importance of the neighbor representation under each relationship to achieve relationship-awareness. Finally, using the edge-level attention mechanism to adaptively learn the importance of the neighbor representation under each relationship, the relationship-aware neighbor information is aggregated to obtain the embedding vector of the central node and applied to the fraud detection task. Experiments on both benchmark and real-world graph-based fraud detection tasks demonstrate that the proposed RA-GNN apparently outperforms other baselines.

References

[1]  Carcillo, F., Borgne, Y.L., Caelen, O., et al. (2021) Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection. Information Sciences, 557, 317-331.
https://doi.org/10.1016/j.ins.2019.05.042
[2]  Liu, C., Zhong, Q.W., Ao, X., et al. (2020) Fraud Transactions Detection via Behavior Tree with Local Intention Calibration. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 23-27 August 2020, 3035-3043.
https://doi.org/10.1145/3394486.3403354
[3]  Wu, J.F., Yao, M.F., Wu, D., et al. (2023) DEDGAT: Dual Embedding of Directed Graph Attention Networks for Detecting Financial Risk.
[4]  刘华玲, 刘雅欣, 许珺怡, 等. 图异常检测在金融反欺诈中的应用研究进展[J]. 计算机工程与应用, 2022, 58(22): 41-53.
[5]  Karami, A. (2018) An Anomaly-Based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities. Expert Systems with Applications, 108, 36-60.
https://doi.org/10.1016/j.eswa.2018.04.038
[6]  易东义, 邓根强, 董超雄, 等. 基于图卷积神经网络的医保欺诈检测算法[J]. 计算机应用, 2020, 40(5): 1272-1277.
[7]  Kumar, M., Ghani, R. and Mei, Z.S. (2010) Data Mining to Predict and Prevent Errors in Health Insurance Claims Processing. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 25-28 July 2010, 65-74.
https://doi.org/10.1145/1835804.1835816
[8]  Wang, H.R., Dou, Y.T., Chen, C.Y., et al. (2023) Attacking Fake News Detectors via Manipulating News Social Engagement. Proceedings of the ACM Web Conference, Austin, 30 April-4 May 2023, 3978-3986.
https://doi.org/10.1145/3543507.3583868
[9]  Zhao, L., Sawlani, S., Srinivasan, A. and Akoglu, L. (2022) Graph Anomaly Detection with Unsupervised GNNs.
[10]  Boniol, P., Palpanas, T., Meftah, M. and Remy, E. (2020) GraphAn: Graph-Based Subsequence Anomaly Detection. Proceedings of the VLDB Endowment, 13, 2941-2944.
https://doi.org/10.14778/3415478.3415514
[11]  Pourhabibi, A., Ong, K.L., Kam, B.H. and Boo, Y.L. (2020) Fraud Detection: A Systematic Literature Review of Graph-Based Anomaly Detection Approaches. Decision Support Systems, 133, Article ID: 113303.
https://doi.org/10.1016/j.dss.2020.113303
[12]  Xiang, S., Zhu, M.Z., Cheng, D.W., et al. (2023) Semi-Supervised Credit Card Fraud Detection via Attribute-Driven Graph Representation. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 14557-14565.
https://doi.org/10.1609/aaai.v37i12.26702
[13]  Alam, A.Z., Faris, H., Alqatawna, J., et al. (2018) Evolving Support Vector Machines Using Whale Optimization Algorithm for Spam Profiles Detection on Online Social Networks in Different Iingual Contexts. Knowledge-Based Systems, 153, 91-104.
https://doi.org/10.1016/j.knosys.2018.04.025
[14]  Nguyen, T.T., Phan, T.C., Pham, H.T., et al. (2023) Example-Based Explanations for Streaming Fraud Detection on Graphs. Information Sciences, 621, 319-340.
https://doi.org/10.1016/j.ins.2022.11.119
[15]  Defferrard, M., Bresson, X.V. and Ergheynst, P. (2016) Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, 5-10 December 2016, 3844-3852.
[16]  Veli?kovi?, P., Cucurull, G., Casanova, A., et al. (2018) Graph Attention Networks. International Conference on Learning Representations, Vancouver, 30 April-3 May 2018, 1-12.
[17]  Hamilton, W., Ying, Z. and Leskovec, J. (2017) Inductive Representation Learning on Large Graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 1025-1035.
[18]  Wang, D., Lin, J., Cui, P., et al. (2019) A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. IEEE International Conference on Data Mining, Beijing, 8-11 November 2019, 598-607.
https://doi.org/10.1109/ICDM.2019.00070
[19]  陈安琪, 陈睿, 邝祝芳, 等. 基于图神经网络的不平衡欺诈检测研究[J]. 计算机工程, 2023, 49(11): 150-159.
[20]  Liu, Z., Dou, Y., Yu, P.S., et al. (2020) Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 25-30 July 2020, 1569-1572.
https://doi.org/10.1145/3397271.3401253
[21]  Dou, Y., Liu, Z., Sun, L., et al. (2020) Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters. Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 19-23 October 2020, 315-324.
https://doi.org/10.1145/3340531.3411903
[22]  段福先. 基于异构图神经网络的欺诈检测研究[D]: [硕士学位论文]. 南昌: 华东交通大学, 2022.
[23]  Rayana, S. and Akoglu, L. (2015) Collective Opinion Spam Detection: Bridging Review Networks and Metadata. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 10-13 August 2015, 985-994.
https://doi.org/10.1145/2783258.2783370
[24]  Chawla, N., Bowyer, K., Hall, L., et al. (2002) SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.
https://doi.org/10.1613/jair.953
[25]  He, H.B., Bai, Y., et al. (2008) ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, 1-8 June 2008, 1322-1328.
[26]  Liu, X.Y., Wu, J.X., Zhou, Z.H., et al. (2008) Exploratory Under-Sampling for Class-Imbalance Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39, 539-550.
https://doi.org/10.1109/TSMCB.2008.2007853
[27]  Li, X.Y., Sun, X.., Meng, Y.X., et al. (2020) Dice Loss for Data-Imbalanced NLP Tasks. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5-10 July 2020, 465-476.
https://doi.org/10.18653/v1/2020.acl-main.45
[28]  Shu, J., Xie, Q. and Yi, L.X. (2019) Meta-Weight-Net: Learning an Explicit Mapping for Sample Weighting. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, 8-14 December 2019, 1919-1930.
[29]  Mcauley, J.J. and Leskovec, J. (2013) From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise through Online Reviews. Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, 13-17 May 2013, 897-908.
https://doi.org/10.1145/2488388.2488466
[30]  Wang, X., Zhu, M.Q., Bo, D.Y., et al. (2020) AMGCN: Adaptive Multi-Channel Graph Convolutional Networks. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 23-27 August 2020, 1243-1253.
https://doi.org/10.1145/3394486.3403177

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133