全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

群智感知网络中数据质量保证方法分析
Analysis of Data Quality Assurance Methods in Mobile Crowdsensing Networks

DOI: 10.12677/SEA.2023.126072, PP. 745-751

Keywords: 移动群智感知网络,数据质量,隐私保护
Mobile Crowdsensing Networks
, Data Quality, Privacy Preservation

Full-Text   Cite this paper   Add to My Lib

Abstract:

移动智能终端设备和无线技术的快速发展,使得移动群智感知网络作为一种全新的物联网感知范式得到了广泛关注。然而在实际应用中,移动群智感知系统的大规模应用仍面临一些挑战。感知数据作为移动群智感知网络的重要组成部分,其质量的高低直接影响着移动群智感知系统的服务质量,进而对移动群智感知系统能否大规模普及起着关键作用,因此确保高质量数据是移动群智感知网络研究的重点之一。本文首先从感知数据生命周期的角度出发,对数据感知、数据上传、数据交易阶段中影响感知数据质量的因素进行了详细说明。其次。从激励机制、数据可靠性评估、隐私保护三个方面对现有的感知数据质量保证方法进行了总结;最后,对移动群智感知网络的应用前景以及未来的研究方向进行了总结与展望,以期为移动群智感知数据质量保证方法研究提供一些参考。
The rapid development of mobile intelligent terminal devices and wireless technology has made mobile crowdsensing networks as a new paradigm of IoT attract widespread attention. However, in practical applications, the large-scale application of mobile crowdsensing systems still faces some challenges. As an important component of mobile crowdsensing networks, the quality of crowdsensing data directly affects the service quality of mobile crowdsensing systems, and thus plays a crucial role in the large-scale popularization of mobile crowdsensing systems. Therefore, ensuring high-quality data is one of the focuses of research on mobile crowdsensing networks. This article first provides a detailed explanation of the factors that affect the quality of crowdsensing data during the stages of data perception, data upload, and data trading from the perspective of the crowdsensing data lifecycle. Secondly, summarizing the existing methods for ensuring perceived data quality from three aspects: incentive mechanism, data reliability evaluation, and privacy protection. Finally, a summary and outlook were made on the application prospects and future research directions of mobile crowdsensing networks in order to provide some reference for the research on data quality assurance methods for mobile crowdsensing.

References

[1]  杨朔. 移动群智感知中的数据质量分析和基于质量的用户管理[D]: [硕士学位论文]. 上海: 上海交通大学, 2019.
[2]  熊金波, 毕仁万, 田有亮, 等. 移动群智感知安全与隐私: 模型, 进展与趋势[J]. 计算机学报, 2021, 44(9): 1949-1966.
[3]  王涛春, 金鑫, 吕成梅, 等. 移动群智感知中融合数据的隐私保护方法[J]. 计算机研究与发展, 2020, 57(11): 2337-2347.
[4]  吴垚, 曾菊儒, 彭辉, 等. 群智感知激励机制研究综述[J]. 软件学报, 2016, 27(8): 2025-2047.
[5]  Zhao, B., Tang, S., Liu, X., et al. (2020) PACE: Privacy-Preserving and Quality-Aware Incentive Mechanism for Mobile Crowdsensing. IEEE Transactions on Mobile Computing, 20, 1924-1939.
https://doi.org/10.1109/TMC.2020.2973980
[6]  Peng, D., Wu, F. and Chen, G. (2017) Data Quality Guided Incentive Mechanism Design for Crowdsensing. IEEE Transactions on Mobile Computing, 17, 307-319.
https://doi.org/10.1109/TMC.2017.2714668
[7]  应臣浩, 夏福源, 李颉, 等. 区块链群智感知中基于隐私数据真值估计的激励机制[J]. 计算机研究与发展, 2022, 59(10): 2212-2232.
[8]  Zhao, B., Tang, S., Liu, X., et al. (2020) IronM: Privacy-Preserving Reliability Estimation of Heterogeneous Data for Mobile Crowdsensing. IEEE Internet of Things Journal, 7, 5159-5 170.
https://doi.org/10.1109/JIOT.2020.2975546
[9]  An, J., Liang, D., Gui, X., et al. (2019) Crowdsensing Quality Control and Grading Evaluation Based on a Two-Consensus Blockchain. IEEE Internet of Things Journal, 6, 4711-4718.
https://doi.org/10.1109/JIOT.2018.2883835
[10]  Xue, K., Zhu, B., Yang, Q., et al. (2020) InPPTD: A Lightweight Incentive-Based Privacy-Preserving Truth Discovery for Crowdsensing Systems. IEEE Internet of Things Journal, 8, 4305-4316.
https://doi.org/10.1109/JIOT.2020.3029294
[11]  徐苗苗, 陈珍萍. 基于对称加密和双层真值发现的连续群智感知激励机制[J]. 计算机科学, 2023, 50(1): 294-301.
[12]  高胜, 陈秀华, 朱建明, 等. 基于区块链的群智感知中任务预算约束的位置隐私保护参与者选择方法[J]. 计算机学报, 2022, 45(5): 1052-1067.
[13]  金鑫, 王涛春, 吕成梅, 等. 移动群智感知中原始数据隐私保护算法[J]. 计算机应用, 2020, 40(11): 3249-3254.
[14]  李卓, 宋子晖, 沈鑫, 等. 边缘计算支持下的移动群智感知本地差分隐私保护机制[J]. 计算机应用, 2021, 41(9): 2678-2686.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133