全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自噬在转铁蛋白受体调节妇科肿瘤中的研究进展
Research Progress of Autophagy in Transferrin Receptor Regulation of Gynecologic Tumors

DOI: 10.12677/ACM.2023.13122667, PP. 18962-18968

Keywords: 自噬,转铁蛋白受体,妇科肿瘤
Autophagy
, Transferrin Receptor, Gynecological Tumors

Full-Text   Cite this paper   Add to My Lib

Abstract:

自噬是一种进化上保守的自我降解过程,在维持细胞代谢和稳态上发挥至关重要的作用。在不同条件下,自噬在肿瘤进展中发挥着抑制或促进作用。铁是细胞生长的必需营养物质,通过转铁蛋白受体(TFRC)摄取铁是细胞吸收铁的最重要方式。自噬可以调节细胞铁稳态,自噬及铁代谢失衡均可以导致疾病和肿瘤的发生。在这篇综述中,我们讨论了自噬联合转铁蛋白在妇科肿瘤中的研究进展。
Autophagy is an evolutionarily conserved self-degradation that plays a crucial role in maintaining cellular metabolism and homeostasis. Autophagy plays an inhibitory or promotional role in tumor progression under different conditions. Iron uptake by transferrin receptor is the most important way for cells to absorb iron. Autophagy regulates intracellular iron homeostasis, and the deregula-tion of autophagy and iron metabolism can lead to disease and tumors. In this review, we discuss the progress of autophagy combined with transferrin receptor in gynecologic tumors.

References

[1]  Hu, Y. and Reggiori, F. (2022) Molecular Regulation of Autophagosome Formation. Biochemical Society Transactions, 50, 55-69.
https://doi.org/10.1042/BST20210819
[2]  White, E. (2015) The Role for Autophagy in Cancer. The Journal of Clinical Investigation, 125, 42-46.
https://doi.org/10.1172/JCI73941
[3]  Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Dis-ease. Cell, 132, 27-42.
https://doi.org/10.1016/j.cell.2007.12.018
[4]  Li, X., He, S. and Ma, B. (2020) Autophagy and Autopha-gy-Related Proteins in Cancer. Molecular Cancer, 19, 12.
https://doi.org/10.1186/s12943-020-1138-4
[5]  Morales, M. and Xue, X. (2021) Targeting Iron Metabolism in Cancer Therapy. Theranostics, 11, 8412-8429.
https://doi.org/10.7150/thno.59092
[6]  Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y. and Shang, P. (2018) Transferrin Receptor 1 in Cancer: A New Sight for Cancer Therapy. American Journal of Cancer Research, 8, 916-931.
[7]  Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125.
https://doi.org/10.1146/annurev-nutr-082117-051732
[8]  Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Re-ceptor Mediating Ferritinophagy. Nature, 509, 105-109.
https://doi.org/10.1038/nature13148
[9]  Kataura, T., Sed-lackova, L., Otten, E.G., Kumari, R., Shapira, D., Scialo, F., Stefanatos, R., Ishikawa, K.I., Kelly, G., Seranova, E., et al. (2022) Autophagy Promotes Cell Survival by Maintaining NAD Levels. Developmental Cell, 57, 2584-2598.e2511.
https://doi.org/10.1016/j.devcel.2022.10.008
[10]  Qin, Y., Qiu, J., Wang, P., Liu, J., Zhao, Y., Jiang, F. and Lou, H. (2021) Impaired Autophagy in Microglia Aggravates Dopaminergic Neurodegeneration by Regulating NLRP3 In-flammasome Activation in Experimental Models of Parkinson’s Disease. Brain, Behavior, and Immunity, 91, 324-338.
https://doi.org/10.1016/j.bbi.2020.10.010
[11]  Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12.
https://doi.org/10.1002/path.2697
[12]  Amaravadi, R., Kimmelman, A.C. and White, E. (2016) Recent Insights into the Function of Autophagy in Cancer. Genes & Development, 30, 1913-1930.
https://doi.org/10.1101/gad.287524.116
[13]  Matoba, K. and Noda, N.N. (2021) Structural Catalog of Core Atg Proteins Opens New Era of Autophagy Research. Journal of Biochemistry, 169, 517-525.
https://doi.org/10.1093/jb/mvab017
[14]  Zachari, M. and Ganley, I.G. (2017) The Mammalian ULK1 Complex and Autophagy Initiation. Essays in Biochemistry, 61, 585-596.
https://doi.org/10.1042/EBC20170021
[15]  Kim, K.H. and Lee, M.S. (2014) Autophagy—A Key Player in Cellular and Body Metabolism. Nature Reviews Endocrinology, 10, 322-337.
https://doi.org/10.1038/nrendo.2014.35
[16]  Zhao, H., Yang, M., Zhao, J., Wang, J., Zhang, Y. and Zhang, Q. (2013) High Expression of LC3B Is Associated with Progression and Poor Outcome in Triple-Negative Breast Cancer. Medical Oncology (Northwood, London, England), 30, Article No. 475.
https://doi.org/10.1007/s12032-013-0475-1
[17]  Lazova, R., Camp, R.L., Klump, V., Siddiqui, S.F., Amaravadi, R.K. and Pawelek, J.M. (2012) Punctate LC3B Expression Is a Common Feature of Solid Tumors and Associated with Proliferation, Metastasis, and Poor Outcome. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18, 370-379.
https://doi.org/10.1158/1078-0432.CCR-11-1282
[18]  Islam, M.A., Sooro, M.A. and Zhang, P. (2018) Autophagic Regulation of p62 Is Critical for Cancer Therapy. International Journal of Molecular Sciences, 19, Article No. 1405.
https://doi.org/10.3390/ijms19051405
[19]  Feng, X., Du, W., Ding, M., Zhao, W., Xirefu, X., Ma, M., Zhuang, Y., Fu, X., Shen, J., Zhang, J., et al. (2022) Myosin 1D and the Branched Actin Network Control the Condensation of p62 Bodies. Cell Research, 32, 659-669.
https://doi.org/10.1038/s41422-022-00662-6
[20]  Fu, L.L., Cheng, Y. and Liu, B. (2013) Beclin-1: Autophagic Regulator and Therapeutic Target in Cancer. The International Journal of Biochemistry & Cell Biology, 45, 921-924.
https://doi.org/10.1016/j.biocel.2013.02.007
[21]  Kang, R., Zeh, H.J., Lotze, M.T. and Tang, D. (2011) The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death and Differentiation, 18, 571-580.
https://doi.org/10.1038/cdd.2010.191
[22]  Kaur, S. and Changotra, H. (2020) The Beclin 1 Interactome: Modifica-tion and Roles in the Pathology of Autophagy-Related Disorders. Biochimie, 175, 34-49.
https://doi.org/10.1016/j.biochi.2020.04.025
[23]  Prerna, K. and Dubey, V.K. (2022) Beclin1-Mediated Interplay between Autophagy and Apoptosis: New Understanding. International Journal of Biological Macromolecules, 204, 258-273.
https://doi.org/10.1016/j.ijbiomac.2022.02.005
[24]  Kimmelman, A.C. and White, E. (2017) Autophagy and Tumor Metabolism. Cell Metabolism, 25, 1037-1043.
https://doi.org/10.1016/j.cmet.2017.04.004
[25]  Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bar-tolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., et al. (2007) Ambra1 Regulates Autophagy and Development of the Nervous System. Nature, 447, 1121-1125.
https://doi.org/10.1038/nature05925
[26]  Chang, P., Li, H., Hu, H., Li, Y. and Wang, T. (2021) The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Frontiers in Immunology, 12, Article ID: 763831.
https://doi.org/10.3389/fimmu.2021.763831
[27]  Yang, Z., Goronzy, J.J. and Weyand, C.M. (2015) Autophagy in Autoimmune Disease. Journal of Molecular Medicine (Berlin, Germany), 93, 707-717.
https://doi.org/10.1007/s00109-015-1297-8
[28]  Bravo-San Pedro, J.M., Kroemer, G. and Galluzzi, L. (2017) Au-tophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 120, 1812-1824.
https://doi.org/10.1161/CIRCRESAHA.117.311082
[29]  Gozuacik, D. and Kimchi, A. (2004) Autophagy as a Cell Death and Tumor Suppressor Mechanism. Oncogene, 23, 2891-2906.
https://doi.org/10.1038/sj.onc.1207521
[30]  Wijshake, T., Zou, Z., Chen, B., Zhong, L., Xiao, G., Xie, Y., Doench, J.G., Bennett, L. and Levine, B. (2021) Tumor-Suppressor Function of Beclin 1 in Breast Cancer Cells Requires E-cadherin. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020478118.
https://doi.org/10.1073/pnas.2020478118
[31]  Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell’antonio, G., et al. (2011) Pancreatic Cancers Require Autophagy for Tumor Growth. Genes & Development, 25, 717-729.
https://doi.org/10.1101/gad.2016111
[32]  Lazova, R., Klump, V. and Pawelek, J. (2010) Autophagy in Cutaneous Malignant Melanoma. Journal of Cutaneous Pathology, 37, 256-268.
https://doi.org/10.1111/j.1600-0560.2009.01359.x
[33]  Liu, J. and Debnath, J. (2016) The Evolving, Multifaceted Roles of Autophagy in Cancer. In: Advances in Cancer Research, Vol. 130, Elsevier, Amsterdam, 1-53.
https://doi.org/10.1016/bs.acr.2016.01.005
[34]  Gammella, E., Buratti, P., Cairo, G. and Recalcati, S. (2017) The Transferrin Receptor: The Cellular Iron Gate. Metallomics: Integrated Biometal Science, 9, 1367-1375.
https://doi.org/10.1039/C7MT00143F
[35]  Daniels-Wells, T.R. and Penichet, M.L. (2016) Transferrin Receptor 1: A Target for Antibody-Mediated Cancer Therapy. Immunotherapy, 8, 991-994.
https://doi.org/10.2217/imt-2016-0050
[36]  Daniels, T.R., Delgado, T., Rodriguez, J.A., Helguera, G. and Penichet, M.L. (2006) The Transferrin Receptor Part I: Biology and Targeting with Cytotoxic Antibodies for the Treatment of Cancer. Clinical Immunology (Orlando, Fla), 121, 144-158.
https://doi.org/10.1016/j.clim.2006.06.010
[37]  Chen, L.L., Huang, Y.J., Cui, J.T., Song, N. and Xie, J. (2019) Iron Dysregulation in Parkinson’s Disease: Focused on the Autophagy-Lysosome Pathway. ACS Chemical Neuroscience, 10, 863-871.
https://doi.org/10.1021/acschemneuro.8b00390
[38]  Huo, T., Jia, Y., Yin, C., Luo, X., Zhao, J., Wang, Z. and Lv, P. (2019) Iron Dysregulation in Vascular Dementia: Focused on the AMPK/Autophagy Pathway. Brain Research Bulle-tin, 153, 305-313.
https://doi.org/10.1016/j.brainresbull.2019.09.006
[39]  Park, E. and Chung, S.W. (2019) ROS-Mediated Autoph-agy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death & Disease, 10, Article No. 822.
https://doi.org/10.1038/s41419-019-2064-5
[40]  Orfanelli, T., Jeong, J.M., Doulaveris, G., Holcomb, K. and Witkin, S.S. (2014) Involvement of Autophagy in Cervical, Endometrial and Ovarian Cancer. International Journal of Cancer, 135, 519-528.
https://doi.org/10.1002/ijc.28524
[41]  Yang, C., Li, J., Guo, Y., Gan, D., Zhang, C., Wang, R., Hua, L., Zhu, L., Ma, P., Shi, J., et al. (2022) Role of TFRC as a Novel Prognostic Biomarker and in Immunotherapy for Pancreatic Carcinoma. Frontiers in Molecular Biosciences, 9, Article ID: 756895.
https://doi.org/10.3389/fmolb.2022.756895
[42]  Kukulj, S., Jaganjac, M., Boranic, M., Krizanac, S., Santic, Z. and Poljak-Blazi, M. (2010) Altered Iron Metabolism, Inflammation, Transferrin Receptors, and Ferritin Expression in Non-Small-Cell Lung Cancer. Medical Oncology (Northwood, London, England), 27, 268-277.
https://doi.org/10.1007/s12032-009-9203-2
[43]  Huang, Y., Huang, J., Huang, Y., Gan, L., Long, L., Pu, A. and Xie, R. (2020) TFRC Promotes Epithelial Ovarian Cancer Cell Proliferation and Metastasis via Up-Regulation of AXIN2 Expression. American Journal of Cancer Research, 10, 131-147.
[44]  Huang, N., Wei, Y., Cheng, Y., Wang, X., Wang, Q., Chen, D. and Li, W. (2022) Iron Metabolism Protein Transferrin Receptor 1 Involves in Cervical Cancer Progression by Affecting Gene Expression and Alternative Splicing in HeLa Cells. Genes & Genomics, 44, 637-650.
https://doi.org/10.1007/s13258-021-01205-w
[45]  Parenti, R., Salvatorelli, L. and Magro, G. (2014) Anaplastic Thyroid Carcinoma: Current Treatments and Potential New Therapeutic Options with Emphasis on TfR1/CD71. Interna-tional Journal of Endocrinology, 2014, Article ID: 685396.
https://doi.org/10.1155/2014/685396
[46]  Horniblow, R.D., Bedford, M., Hollingworth, R., Evans, S., Sutton, E., Lal, N., Beggs, A., Iqbal, T.H. and Tselepis, C. (2017) BRAF Mutations Are Associated with Increased Iron Regulatory Protein-2 Expression in Colorectal Tumorigenesis. Cancer Science, 108, 1135-1143.
https://doi.org/10.1111/cas.13234
[47]  Yang, Z., Sun, Q., Guo, J., Wang, S., Song, G., Liu, W., Liu, M. and Tang, H. (2019) GRSF1-Mediated MIR-G-1 Promotes Malignant Behavior and Nuclear Autophagy by Directly Upregulating TMED5 and LMNB1 in Cervical Cancer Cells. Autophagy, 15, 668-685.
https://doi.org/10.1080/15548627.2018.1539590
[48]  李沫, 宓淑芳, 王孝信. lncRNA-CCAT1通过调控PI3K/Akt/mTOR信号通路对宫颈癌HeLa细胞自噬的影响[J]. 中国免疫学杂志, 2021, 37(15): 1855-1859.
[49]  Nie, X., Liu, D., Zheng, M., Li, X., Liu, O., Guo, Q., Zhu, L. and Lin, B. (2022) HERPUD1 Promotes Ovarian Cancer Cell Survival by Sustaining Autophagy and Inhibit Apoptosis via PI3K/AKT/mTOR and p38 MAPK Signaling Pathways. BMC Cancer, 22, Article No. 1338.
https://doi.org/10.1186/s12885-022-10248-5
[50]  Zhu, H., Diao, S., Lim, V., Hu, L. and Hu, J. (2019) FAM83D Inhibits Autophagy and Promotes Proliferation and Invasion of Ovarian Cancer Cells via PI3K/AKT/mTOR Pathway. Acta Biochimica et Biophysica Sinica, 51, 509-516.
https://doi.org/10.1093/abbs/gmz028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133