The formations of [NAPA-A(H2O)n (n = 1, 2, 3, 4)] complexes have been studied employing DFT/wB97XD/cc-pVTZ computational level to understand the kinetics and thermodynamics for the hydration reactions of N-acetyl-phenylalaninylamide (NAPA). Thermodynamic parameters such as reaction energy (E), enthalpy (H), Gibb’s free energy (G), specific heat capacity (Cv), entropy (S), and change of these parameters (ΔEr, ΔHr, ΔGr, ΔCr, and ΔSr) were studied using the explicit solvent model. The predicted values of H, G, C, and S increase with the sequential addition of water in NAPA-A due to the increase in the total number of vibrational modes. On the other hand, the value of ΔEr, ΔHr, and ΔGr increases (more negative to less negative) gradually for n = 1, 2, 3, and 4 that indicates an increase of hydration in NAPA-A makes exothermic to endothermic reactions. The barrier heights for the transition states (TS) of [NAPA-A(H2O)n (n = 1, 2, 3, 4)] complexes are predicted to lie at 4.41, 4.05, 3.72 and 2.26 kcal/mol respectively below the reactants. According to the calculations, the formations of [NAPA-A(H2O)1] and [NAPA-A(H2O)2] complexes are barrierless reactions because both water molecules are strongly bonded via two hydrogen bonds in the backbone of NAPA-A. On the contrary, the reactions of [NAPA-A(H2O)3] and [NAPA-A(H2O)4] complexation are endothermic and the barrier heights are predicted to stay at 6.30 and 10.54 kcal/mol respectively above the reactants. The free energy of activation (Δ‡G0) for the reaction of [NAPA-A(H2O)1], [NAPA-A(H2O)2], [NAPA-A(H2O)3], and [NAPA-A(H2O)4] complexation are 4.43, 4.28, 3.83 and 5.11 kcal/mol respectively which are very low. As well as the rates of reactions are 3.490 × 109 s-1, 4.514 × 109 s-1, 9.688 × 109 s-1, and 1.108 × 109 s-1 respectively which are very fast and spontaneous.
References
[1]
Schweitzer-Stenner, R. (2012) Protein and Peptide Folding, Misfolding and Non-Folding. Wiley, Hoboken.
[2]
Lanza, G. and Chiacchio, M.A. (2014) Ab Initio MP2 and Density Functional Theory Computational Study of AcAlaNH2 Peptide Hydration: A Bottom-Up Approach. ChemPhysChem, 15, 2785-2793. https://doi.org/10.1002/cphc.201402222
[3]
Young, T., Abel, R., Kim, B., Berne, B.J. and Friesner, R.A. (2007) Motifs for Molecular Recognition Exploiting Hydrophobic Enclosure in Protein-Ligand Binding. Proceedings of the National Academy of Sciences of the United States of America, 104, 808-813. https://doi.org/10.1073/pnas.0610202104
[4]
Fuchs, P.F.J., Bonvin, A.M.J.J., Bochicchio, B., Pepe, A., Alix, A.J.P. and Tamburro, A.M. (2006) Kinetics and Thermodynamics of Type VIII β-Turn Formation: A CD, NMR, and Microsecond Explicit Molecular Dynamics Study of the GDNP Tetrapeptide. Biophysical Journal, 90, 2745-2759. https://doi.org/10.1529/biophysj.105.074401
[5]
Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, A., Cavalli, A., Ostermann, T.E., Heine, A. and Klebe, G. (2018) Intriguing Role of Water in Protein-Ligand Binding Studied by Neutron Crystallography on Trypsin Complexes. Nature Communications, 9, Article No. 3559. https://doi.org/10.1038/s41467-018-05769-2
Hua, W., Ai, Y.J., Gao, B., Li, H., Agren, H. and Luo, Y. (2012) X-Ray Spectroscopy of Blocked Alanine in Water Solution from Supermolecular and Supermolecular-Continuum Solvation Models: A First-Principles Study. Physical Chemistry Chemical Physics, 14, 9666-9675. https://doi.org/10.1039/c2cp40732a
[8]
Comez, L., Lupi, L., Morresi, A., Paolantoni, M., Sassi, P. and Fioretto, D. (2013) More Is Different: Experimental Results on the Effect of Biomolecules on the Dynamics of Hydration Water. Journal of Physical Chemistry Letters, 4, 1188-1192. https://doi.org/10.1021/jz400360v
[9]
Vraneŝ, M., Paniĉ, J., Tot, A., Papoviĉ, S., Gadžurić, S., Podlipnik, Ĉ. and Beŝter-Rogaĉ, M. (2021) From Amino Acids to Dipeptide: The Changes in Thermal Stability and Hydration Properties of β-Alanine, L-Histidine and L-Carnosine. Journal of Molecular Liquids, 328, Article ID: 115250. https://doi.org/10.1016/j.molliq.2020.115250
[10]
Gavrilov, Y., Leuchter, J. and Levy, Y. (2017) On the Coupling between the Dynamics of Protein and Water. Physical Chemistry Chemical Physics, 19, 8243-8257. https://doi.org/10.1039/C6CP07669F
[11]
Biswal, H.S., Loquais, Y., Tardivel, B., Gloaguen, E. and Mons, M. (2011) Isolated Monohydrates of a Model Peptide Chain: Effect of a First Water Molecule on the Secondary Structure of a Capped Phenylalanine. Journal of American Chemical Society, 133, 3931-3942. https://doi.org/10.1021/ja108643p
[12]
Lytkin, A.I., Krutova, O.N., Tyunina, E.Y., Chernikov, V.V., Mokhova, Y.V. and Krutova, E.D. (2021) Thermochemical Study of Reactions of Acid-Base Interaction in an L-Glutathione Aqueous Solution. Russian Journal of Physical Chemistry A, 95, 2051-2054. https://doi.org/10.1134/S0036024421100162
[13]
Lanza, G. and Chiacchio, M.A. (2016) Effects of Hydration on the Zwitterion Trialanine Conformation by Electronic Structure Theory. Journal of Physical Chemistry B, 120, 11705-11719. https://doi.org/10.1021/acs.jpcb.6b08108
[14]
Lapelosa, M. (2017) Free Energy of Binding and Mechanism of Interaction for the MEEVD-TPR2A Peptide-Protein Complex. Journal of Chemical Theory and Computation, 13, 4514-4523. https://doi.org/10.1021/acs.jctc.7b00105
[15]
Gale, A.G., Odbadrakh, T.T., Ball, B.T. and Shields, G.C. (2020) Water-Mediated Peptide Bond Formation in the Gas Phase: A Model Prebiotic Reaction. Journal of Physical Chemistry A, 124, 4150-4159. https://doi.org/10.1021/acs.jpca.0c02906
[16]
Lanza, G. and Chiacchio, M.A. (2018) Quantum Mechanics Study on Hydrophilic and Hydrophobic Interactions in the Trivaline—Water System. Journal of Physical Chemistry B, 122, 4289-4298. https://doi.org/10.1021/acs.jpcb.8b00833
[17]
Arsiccio, A. and Shea, J.E. (2021) Pressure Unfolding of Proteins: New Insights into the Role of Bound Water. Journal of Physical Chemistry B, 125, 8431-8442. https://doi.org/10.1021/acs.jpcb.1c04398
[18]
Fischer, K.C., Voss, J.M., Zhou, J. and Garand, E. (2018) Probing Solvation-Induced Structural Changes in Conformationally Flexible Peptides: IR Spectroscopy of Gly3H+·(H2O). Journal of Physical Chemistry A, 122, 8213-8221. https://doi.org/10.1021/acs.jpca.8b07546
[19]
Huggins, D.J. (2016) Studying the Role of Cooperative Hydration in Stabilizing Folded Protein States. Journal of Structural Biology, 196, 394-406. https://doi.org/10.1016/j.jsb.2016.09.003
[20]
Yu, H. and Rick, S.W. (2010) Free Energy, Entropy and Enthalpy of a Water Molecule in Various Protein Environments. Journal of Physical Chemistry B, 114, 11522-11560. https://doi.org/10.1021/jp104209w
[21]
Chalikian, T.V. (2021) Does the Release of Hydration Water Come with a Gibbs Energy Contribution? Journal of Chemical Thermodynamics, 158, Article ID: 106409. https://doi.org/10.1016/j.jct.2021.106409
[22]
Wachlmayr, J., Fläschner, G., Pluhackova, K., Sandtner, W., Siligan, C. and Horner, A. (2023) Entropic Barrier of Water Permeation through Single-File Channels. Communications Chemistry, 6, Article No. 135. https://doi.org/10.1038/s42004-023-00919-0
[23]
Cheatham, T., Darden, T., Gohlke, H., Luo, R., Merz Jr, K.M., Onufriev, A., Simmerling, C., Wang, B. and Woods, R. (2005) The Amber Biomolecular Simulation Programs. The Journal of Computational Chemistry, 26, 1668-1688. https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.20290
[24]
(2002) Hyper Chem Professional 7.51. Hypercube, Inc., Gainesville. http://www.hypercubeusa.com/
[25]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B. and Fox, D.J. (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford. https://gaussian.com/gaussian16/
[26]
McQuarrie, D.A. and Simon, J.H. (1997) Physical Chemistry: A Molecular Approach. University Science Books, Mill Valley. https://uscibooks.aip.org/books/physical-chemistry-a-molecular-approach/
[27]
Malis, M., Loquais, Y., Gloaguen, E., Biswal, H.S., Piuzzi, F., Tardivel, B., Brenner, V., Broquier, M., Jouvet, C., Mons, M., Doslic, N. and Ljubic, I. (2012) Unraveling the Mechanisms of Nonradiative Deactivation in Model Peptides following Photoexcitation of a Phenylalanine Residue. Journal of American Chemical Society, 134, 20340-20351. https://doi.org/10.1021/ja3054942
[28]
Malis, M. and Doslic, N. (2017) Nonradiative Relaxation Mechanisms of UV Excited Phenylalanine Residues: A Comparative Computational Study. Molecules, 2, Article 493. https://doi.org/10.3390/molecules22030493
[29]
Alauddin, M. (2021) Effect of Solvents and Temperature on the Structural, Thermodynamic and Electronic Properties of Capped Phenylalanine: A Computational Study. Journal of Bangladesh Academy of Sciences, 45, 205-215. https://doi.org/10.3329/jbas.v45i2.57212
[30]
Alauddin, M. and Ripa, J.D. (2022) Effect of Microhydration on the Peptide Backbone of N-Acetyl-Phenylalaninylamide (NAPA) Using IR, Raman and Vibrational Chiroptical Spectrosocpies (VCD, ROA): A Computational Study. European Journal of Applied Sciences, 10, 617-638. https://doi.org/10.14738/aivp.104.12859
[31]
Alauddin, M. and Ripa, J.D. (2023) A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA). Computational Chemistry, 11, 37-52. https://doi.org/10.4236/cc.2023.112003
[32]
Gao, A., Li, G., Peng, B., Weidman, J.D., Xie, Y. and Schaefer III, H.F. (2020) The Water Trimer Reaction OH + (H2O)3 → (H2O)2OH + H2O. Physical Chemistry Chemical Physics, 22, 9767-9774. https://doi.org/10.1039/D0CP01418D
[33]
Lanza, G. and Chiacchio, M.A. (2017) Quantum Mechanics Approach to Hydration Energies and Structures of Alanine and Dialanine. ChemPhysChem, 18, 1586-1596. https://doi.org/10.1002/cphc.201700149