全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lamprophyre Rocks in the Nassara Gold Deposit, Southwest Burkina Faso: Characteristics and Implication for Mining Exploration

DOI: 10.4236/ojg.2023.1312056, PP. 1291-1311

Keywords: Nassara, Calc-Alkaline Lamprophyre, Metasomatic Activity, LILE, HREE, LREE

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lamprophyres are late dykes that cut the formations hosting the gold mineralization in the Nassara deposit. They are geographically and spatially related to most orogenic gold deposits. It is with the aim of characterizing them and seeing their implications for exploration that this work is carried out. To achieve our objective, petrographic studies and chemical analyses of minerals (pyroxenes, amphiboles, feldspars, chromite) and geochemical analyses of total rock were carried out. These studies have enabled us to classify the Nassara lamprophyres as calc-alkaline lamprophyres of the spessartite type. The Cr, Co, Ni and Mg enrichment of these rocks would indicate a depleted mantle source, with LILE enrichment by fluids probably related to metasomatic activity. The various diagrams show that they are depleted in HREE and enriched in LREE. The high Nb/Ta ratios in our data indicate metasomatic activity probably linked to amphibole and rutile in the mantle prior to melting. The geodynamic context of spessartite-type lamprophyres indicates a signature linked to late-orogenic to post-collisional subduction. They are late-orogenic to post-collisional lamprophyres enriched in compatible elements (Cr, Ni, Co) and display a negative Ta-Nb-Ti (TNT) anomaly. The frequent association of these lamprophyre dykes with the deposits does not indicate the source of the gold for these deposits, but rather zones of crustal permeability capable of draining hydrothermal fluids at the time of emplacement. Good mapping of lamprophyre dykes, especially in shear zones, could therefore guide prospecting and identify potential zones of hydrothermal fluid circulation.

References

[1]  Le Maitre, R.W. (1989) A Classification of Igneous Rocks and Glossary of Terms (Recommendations of the International Union of Geological Sciences Sub-Commission on the Systematics of Igneous Rocks). Blackwell, Oxford, 193 p.
[2]  Rock, N.M.S. (1991) Lamprophyres. Blackie, Glasgow, 285 p.
https://doi.org/10.1007/978-1-4757-0929-2
[3]  Le Bas, M.J. and Streckeisen, A.L. (1991) The IUGS Systematics of Igneous Rocks. Journal of the Geological Society, 148, 825-833.
https://doi.org/10.1144/gsjgs.148.5.0825
[4]  Leat, P.T., Thompson, R.N., Morrison, M.A., Hendry, G.L. and Dickin, A.P. (1988) Silicic Magmas Derived by Fractional Crystallization from Miocene Minette, Elkhead Mountains, Colorado. Mineralogical Magazine, 52, 577-585.
https://doi.org/10.1180/minmag.1988.052.368.03
[5]  Wyman, D. and Kerrich, R. (1989) Archean Shoshonitic Lamprophyres Associated with Superior Province Gold Deposits: Distribution, Tectonic Setting, Noble Metal Abundances, and Significance for Gold Mineralization. Economic Geology Monograph, 6, 651-667.
https://doi.org/10.5382/Mono.06.50
[6]  Macdonald, R., Upton, B.G.J., Collerson, K.D., Hearn Jr., B.C. and James, D. (1992) Potassic Mafic Lavas of the Bearpaw Montana: Mineralogy, Chemistry, and Origin. Journal of Petrology, 33, 305-346.
https://doi.org/10.1093/petrology/33.2.305
[7]  Carlier, G., Lorand, J.P., Audebaud, E. and Kienast, J.R. (1997) Petrology of Unusual Orthopyroxene-Bearing Minette Suite from Southeastern Peru, Eastern Andean Cordillera: Al-Rich Lamproites Contaminated by Peraluminous Granites. Journal of Volcanology and Geothermal Research, 75, 59-87.
https://doi.org/10.1016/S0377-0273(96)00035-2
[8]  Allibone, A.H., Campbell, M.T., Harrist, T., Etheridge, M., Munroe, S., Byrned, D., Amanor, J. and Gyapong, W. (2002) Structural Controls on Gold Mineralization at the Ashanti Gold Deposit, Obuasi, Ghana. In: Goldfarb, R.J. and Nielsen, R.L., Eds., Integrated Methods for Discovery: Global Exploration in the Twenty-First Century, Society of Economic Geology, Littleton, Special Publication 9, 65-93.
https://doi.org/10.5382/SP.09.04
[9]  Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2-2.0 Ga), Western Burkina-Faso. Precambrian Research, 191, 18-45.
https://doi.org/10.1016/j.precamres.2011.08.010
[10]  Ouedraogo, M.F. and Prost, A.E. (1986) Relationships between Schistosity and Folding within the Birimian Yako-Batie Greenstone Belt (Burkina Faso). Comptes Rendus de l’Academie des Sciences, 303, 1713-1718.
[11]  Lompo, M., Caby, R. and Robineau, B. (1991) Etude structurale et géologique des séries birimiennes de la région de Kwademen, Burkina Faso, Afrique de l’Ouest. In: Evolution et controle structural des minéralisations sulfurées et aurifères pendant l’Eburnéen, Université de Clermont Ferrand, Clermont-Ferrand, 1-192.
[12]  Metelka, V., Baratoux, L., Naba, S. and Jessell, M.W. (2011) A Geophysically Constrained Litho-Structural Analysis of the Eburnean Greenstone Belts and Associated Granitoid Domains, Burkina Faso, West Africa. Precambrian Research, 190, 48-69.
https://doi.org/10.1016/j.precamres.2011.08.002
[13]  Ledru, P., Milési, J.P., Feybesse, J.L., Dommanget, A., Johan, V., Diallo, M. and Vinchon, C. (1989) Tectonique transcurrente et évolution polycyclique dans le Birimien, Protérozoique inférieur du Sénégal-Mali. Comptes Rendus de l’Académie des Sciences Paris, 308, 117-122.
[14]  Milési, J.P., Ledru, P., Feybesse, J.-L., Dommanget, A. and Marcoux, E. (1992) Early Proterozoic Ore Deposits and Tectonics of the Birimian Orogenic Belt, West Africa. Precambrian Research, 58, 305-344.
https://doi.org/10.1016/0301-9268(92)90123-6
[15]  Feybesse, J.L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.L., Milési, J.P. and Bouchot, V. (2006) The Paleoproterozoic Ghanaian Province: Geodynamic Model and Ore Controls, Including Regional Stress Modeling. Precambrian Research, 149, 149-196.
https://doi.org/10.1016/j.precamres.2006.06.003
[16]  Ouiya P., Siebenaller, L., Salvi, S., Béziat, D., Naba, S., Baratoux, L., Naré, A. and Franceschi, G. (2016) The Nassara Gold Prospect, Gaoua District, Southwestern Burkina Faso. Ore Geology Reviews, 78, 623-630.
https://doi.org/10.1016/j.oregeorev.2015.11.026
[17]  Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marchal, M. (1982) Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59, 139-154.
https://doi.org/10.1016/0012-821X(82)90122-4
[18]  Béziat, D., Bourges, F., Débat, P., Lompo, M., Martin, F. and Tollon, F. (2000) A Paleoproterozoic Ultramafic-Mafic Assemblage and Associated Volcanic Activity in the West African Craton. Precambrian Research, 10, 25-47.
https://doi.org/10.1016/S0301-9268(99)00085-6
[19]  Leake, B.E., et al. (1997) Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246.
[20]  Al’meev, R.R., Ariskin, A.A., Ozerov, A.Yu. and Kononkova, N.N. (2002) Problems of the Stoichiometry and Thermobarometry of Magmatic Amphiboles: An Example of Hornblende from the Andesites of Bezymyannyi Volcano, Eastern Kamchatka. Geochemistry International, 40, 723-738.
[21]  Dick, H.J.B. and Bullen, T. (1984) Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites, and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86, 54-76.
https://doi.org/10.1007/BF00373711
[22]  Leblanc, M. (1985) Les Gisements de Spinelles Chromiferes. Bulletin de Minéralogie, 108, 587-602.
https://doi.org/10.3406/bulmi.1985.7876
[23]  Irvine, T.N. (1967) Chromian Spinel as a Petrogenetic Indicator. Part 2. Petrographic Applications. The Canadian Journal of Earth Sciences, 4, 71-103.
https://doi.org/10.1139/e67-004
[24]  Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
https://doi.org/10.1007/BF00384745
[25]  Pearce, J.A. (1983) The Role of Sub-Continental Lithosphere in Magma Genesis at Destructive Plate Margins. In: Hawkesworth, C.J. and Norry, M.J., Eds., Continental Basalts and Mantle Xenoliths, Shiva, Nantwich, 230-249.
[26]  Rocks, N.M.S. (1987) The Nature and Origin of Lamprophyres: An Overview. Geological Society of London Special Publication 30, London, 191-226.
https://doi.org/10.1144/GSL.SP.1987.030.01.09
[27]  Morin, D. (1998) La brèche intrusive de Rivard mise en place, nature et origine d’un lamprophyre ultrapotassique Grenvillien et de ses xénolites ultramafiques, région de Mont-Laurier, Québec. Doctoral Dissertation, Université du Québec, Institut national de la recherche scientifique, Québec.
[28]  Gill, R. (2010) Igneous Rocks and Processes: A Practical Guide. John Wiley & Sons, Hoboken.
[29]  Mitchell, R.H. (1994) Suggestions for Revisions to the Terminology of Kimberlites and Lamprophyres from a Genetic Viewpoint. In: Meyer, H.O.A. and Leonardos, O.H., Eds., Proceedings 5th International Kimberlite Conference 1. Kimberlites and Related Rocky and Mantle Xenoliths, Companhia de Pesquisa de Recursos Minerais, Brasilia, Spec. Publ. 1/A, 15-26.
[30]  Moayyed, M., Moazzen, M., Calagari, A.A., Jahangiri, A. and Modjarrad, M. (2008) Geochemistry and Petrogenesis of Lamprophyric Dykes and the Associated Rocks from Eslamy Peninsula, NW Iran: Implications for Deep-Mantle Metasomatism. Chemie der Erde, 68, 141-154.
https://doi.org/10.1016/j.chemer.2006.04.002
[31]  McDonough, W.F. and Sun, S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[32]  Foley, S., Tiepolo, M. and Vannucci, R. (2002) Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417, 837-840.
https://doi.org/10.1038/nature00799
[33]  Wyman, D.A., Ayer, J.A., Conceicao, R.V. and Sage, R.P. (2006) Mantle Processes in an Archean Orogen: Evidence from 2.67 Ga Diamond-Bearing Lamprophyres and Xenoliths. Lithos, 89, 300-328.
https://doi.org/10.1016/j.lithos.2005.12.005
[34]  Krmícek, L., Magna, T., Pandey, A., Chalapathi Rao, N.V. and Kynicky, J. (2021) Lithium Isotopes in Kimberlites, Lamproites and Lamprophyres as Tracers of Source Components and Processes Related to Supercontinent Cycles. Geological Society, London, Special Publications, 513.
https://doi.org/10.1144/SP513-2021-60
[35]  Traoré, Y.D., Siebenaller, L., Salvi, S., Béziat, D. and Bouaré, M.L. (2016) Progressive Gold Mineralization along the Syama Corridor, Southern Mali (West Africa). Ore Geology Reviews, 78, 586-598.
https://doi.org/10.1016/j.oregeorev.2015.11.003
[36]  Rock, N.M., Groves, D.I., Perring, C.S. and Golding, S.D. (1989) Gold, Lamprophyres, and Porphyries: What Does Their Association Mean. Economic Geology Monograph, 6, 609-625.
https://doi.org/10.5382/Mono.06.47
[37]  Kerrich, R. and Wyman, D.A. (1994) The Mesothermal Gold-Lamprophyre Association: Significance for an Accretionary Geodynamic Setting, Supercontinent Cycles, and Metallogenic Processes. Mineralogy and Petrology, 51, 147-172.
https://doi.org/10.1007/BF01159725
[38]  Mueller, W. and Donaldson, J.A. (1992) Development of Sedimentary Basins in the Archean Abitibi Belt, Canada: An Overview. Canadian Journal of Earth Sciences, 29, 2249-2265.
https://doi.org/10.1139/e92-177
[39]  Taylor, W.R., Rock, N.M., Groves, D.I., Perring, C.S. and Golding, S.D. (1994) Geochemistry of Archean Shoshonitic Lamprophyres from the Yilgarn Block, Western Australia: Au Abundance and Association with Gold Mineralization. Applied Geochemistry, 9, 197-222.
https://doi.org/10.1016/0883-2927(94)90007-8
[40]  Dubé, B., Williamson, K., McNicoll, V., Malo, M., Skulski, T., Twomey, T. and Sanborn-Barrie, M. (2004) Timing of Gold Mineralization at Red Lake, Northwestern Ontario, Canada: New Constraints from U-Pb Geochronology at the Goldcorp High-Grade Zone, Red Lake Mine, and the Madsen Mine. Economic Geology, 99, 1611-1641.
https://doi.org/10.2113/99.8.1611
[41]  Wyman, D., Kerrich, R. and Sun, M. (1995) Noble Metal Abundances of Late Archean (2.7 Ga) Accretion-Related Shoshonitic Lamprophyres, Superior Province, Canada. Geochimica et Cosmochimica Acta, 59, 47-57.
https://doi.org/10.1016/0016-7037(94)00373-T

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133