全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tracing the Origin of Metasedimentary Rocks in the Tortiya Diamond Region (Northern C?te d’Ivoire)

DOI: 10.4236/ojg.2023.1312055, PP. 1271-1290

Keywords: Petrography, Geochemistry, Metasediments, Tortiya, Ivory Coast

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metasedimentary rocks from the Tortiya diamondiferous region (northern Côte d’Ivoire), located in the Ivorian Paleoproterozoic domain, were analyzed with the aim of identifying their different petrographic facies, constraining their provenance and tectonic environment, and assessing the effects of sedimentary processes and weathering on the signature of their source rocks. These analyses were carried out with a view to helping trace the origin of Tortiya diamonds, which are generally hosted in these metasediments. Major and trace element geochemical data reveal that these samples are characterized by negative Eu anomaly values, low to moderate weathering index values and a high compositional variation index (ICV). These results led to the definition of these metasediments as immature sediments potentially originating from rapid erosion and sediment deposition from local sources. Chemical alteration index (CIA) values and Al2O3-(CaO* + Na2O)-K2O composition space suggest low to medium degrees of meteoric alteration of the parent rock. These rocks therefore show poorly differentiated compositions from the parent rock and poor sediment sorting. Geochemical data and ratios of immobile elements, e.g. Al2O3/TiO2, Cr/Th, Eu/Eu* and (La/Yb)n, indicate that the clastic materials derive mainly from felsic to intermediate sources. Sedimentary tectonic discrimination diagrams demonstrate that most of the samples from the Tortiya diamond-bearing region were deposited on an active continental margin or in a continental arc-island environment. Although this region has a long history of diamond mining, its petrogenesis remains unresolved, and this petrogeochemical work is a step towards initiating scientific research in the area.

References

[1]  Abouchami, W., Boher, M., Michard, A. and Albarede, F. (1990) A Major 2.1 Ga Event of Mafic Magmatism in West Africa: An Early Stage of Crustal Accretion. Journal of Geophysical Research: Solid Earth, 95, 17605-17629.
https://doi.org/10.1029/JB095iB11p17605
[2]  Dampare, S.B., Shibata, T., Asiedu, D.K., Osae, S. and Banoeng-Yakubo, B. (2008) Geochemistry of Paleoproterozoic Metavolcanic Rocks from the Southern Ashanti Volcanic Belt, Ghana: Petrogenetic and Tectonic Setting Implications. Precambrian Research, 162, 403-423.
https://www.sciencedirect.com/science/article/pii/S0301926807002823
https://doi.org/10.1016/j.precamres.2007.10.001
[3]  Hirdes, W. and Davis, D.W. (1998) First U Pb Zircon Age of Extrusive Volcanism in the Birimian Supergroup of Ghana/West Africa. Journal of African Earth Sciences, 27, 291-294.
https://doi.org/10.1016/S0899-5362(98)00062-1
https://www.sciencedirect.com/science/article/pii/S0899536298000621
[4]  Béziat, D., Dubois, M., Debat, P., Nikiéma, S., Salvi, S. and Tollon, F. (2008) Gold Metallogeny in the Birimian Craton of Burkina Faso (West Africa). Journal of African Earth Sciences, 50, 215-233.
https://www.sciencedirect.com/science/article/pii/S1464343X07001744
https://doi.org/10.1016/j.jafrearsci.2007.09.017
[5]  Sylvester, P.J. and Attoh, K. (1992) Lithostratigraphy and Composition of 2.1 Ga Greenstone Belts of the West African Craton and Their Bearing on Crustal Evolution and the Archean-Proterozoic Boundary. The Journal of Geology, 100, 377-393.
https://doi.org/10.1086/629593
[6]  Liégeois, J.P., Claessens, W., Camara, D. and Klerkx, J. (1991) Short-Lived Eburnian Orogeny in Southern Mali. Geology, Tectonics, U-Pb and Rb-Sr Geochronology. Precambrian Research, 50, 111-136.
https://doi.org/10.1016/0301-9268(91)90050-K
https://www.sciencedirect.com/science/article/pii/030192689190050K
[7]  Boher, M., Abouchami, W., Michard, A., Albarede, F. and Arndt, N.T. (1992) Crustal Growth in West Africa at 2.1 Ga. Journal of Geophysical Research: Solid Earth, 97, 345-369.
https://doi.org/10.1029/91JB01640
[8]  Leube, A., Hirdes, W., Mauer, R. and Kesse, G.O. (1990) The Early Proterozoic Birimian Supergroup of Ghana and Some Aspects of Its Associated Gold Mineralization. Precambrian Research, 46, 139-165.
https://www.sciencedirect.com/science/article/pii/0301926890900707
https://doi.org/10.1016/0301-9268(90)90070-7
[9]  Anani, C.Y., Bonsu, S., Kwayisi, D. and Asiedu, D.K. (2019) Geochemistry and Provenance of Neoproterozoic Metasedimentary Rocks from the Togo Structural Unit, Southeastern Ghana. Journal of African Earth Sciences, 153, 208-218.
https://www.sciencedirect.com/science/article/pii/S1464343X19300664
https://doi.org/10.1016/j.jafrearsci.2019.03.002
[10]  Woguia, B.K., Nono, G.D.K., Tsoungui, P.E.N.E., Njiosseu, E.L.T., Kenne, P.A. and Nzenti, J.P. (2022) Geochemistry and U-Pb Zircon Age of the Paleoproterozoic Metasedimentary Rocks from the Bidou I, Nyong Series, Cameroon: Implications for Provenance and Tectonic Setting. Arabian Journal of Geosciences, 15, Article No. 154.
https://doi.org/10.1007/s12517-022-09476-7
[11]  McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 54, 2015-2050.
https://www.sciencedirect.com/science/article/pii/001670379090269Q
https://doi.org/10.1016/0016-7037(90)90269-Q
[12]  Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution.
https://www.osti.gov/biblio/6582885
[13]  McDaniel, D.K., Hemming, S.R., McLennan, S.M. and Hanson, G.N. (1994) Resetting of Neodymium Isotopes and Redistribution of REEs during Sedimentary Processes: The Early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario, Canada. Geochimica et Cosmochimica Acta, 58, 931-941.
https://www.sciencedirect.com/science/article/pii/0016703794905169
https://doi.org/10.1016/0016-7037(94)90516-9
[14]  Ganne, J., Gerbault, M. and Block, S. (2014) Thermo-Mechanical Modeling of Lower Crust Exhumation—Constraints from the Metamorphic Record of the Palaeoproterozoic Eburnean Orogeny, West African Craton. Precambrian Research, 243, 88-109.
https://www.sciencedirect.com/science/article/pii/S0301926813003859
https://doi.org/10.1016/j.precamres.2013.12.016
[15]  Bardet, M. (1974) Geologie du diamant II. Gisements de diamant d’Afrique.
[16]  Pettijohn, F.J. (1972) The Archean of the Canadian Shield: A Resume. In: Doe, B.R. and Smith, D.K., Eds., Studies in Mineralogy and Precambrian Geology, Vol. 135, Geological Society of America, Boulder, 131-150.
https://pubs.geoscienceworld.org/gsa/books/book/140/chapter-abstract/3790066/The-Archean-of-the-Canadian-Shield-A-Resume?redirectedFrom=PDF
https://doi.org/10.1130/MEM135-p131
[17]  Herron, M.M. (1988) Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. Journal of Sedimentary Research, 58, 820-829.
https://pubs.geoscienceworld.org/sepm/jsedres/article/58/5/820/98094/Geochemical-classification-of-terrigenous-sands
https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D
[18]  Roser, B.P. and Korsch, R.J. (1986) Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94, 635-650.
https://doi.org/10.1086/629071
[19]  Chapell, B.W. and White, A.J.R. (1974) Two Contrasting Types of Granites. Pacific Geology, 8, 113-114.
[20]  McLennan, S.M. (2001) Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109.
https://doi.org/10.1029/2000GC000109
[21]  Rudnick, R. and Gao, S. (2003) Composition of the Continental Crust. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Vol. 3, Elsevier, Amsterdam, 1-64.
https://doi.org/10.1016/B0-08-043751-6/03016-4
[22]  McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Papers, Geological Society of America, Boulder, 21.
https://books.google.ci/books?hl=fr&lr=&id=aUQCAQAAQBAJ&oi=fnd&pg=PA21&dq=%5B26%5D%09McLennan,+S.+M.,+Hemming,+S.,+McDaniel,+D.+K.,+%26+Hanson,+G.+N.+(1993).+Geochemical+approaches+to+sedimentation,+provenance,+and+tec-tonics.&ots=STIPs7y1Wt&sig=27RFaekhONW2-s_HGgrkx8CeTls&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1130/SPE284-p21
[23]  Nesbitt, H.W., Markovics, G. and Price, R.C. (1980) Chemical Processes Affecting Alkalis and Alkaline Earth during Continental Weathering. Geochimica et Cosmochimica Acta, 44, 1659-1666.
https://www.sciencedirect.com/science/article/pii/0016703780902185
https://doi.org/10.1016/0016-7037(80)90218-5
[24]  Nesbitt, H. and Young, G.M. (1982) Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299, 715-717.
https://www.nature.com/articles/299715a0
https://doi.org/10.1038/299715a0
[25]  Fedo, C.M., Wayne Nesbitt, H. and Young, G.M. (1995) Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23, 921-924.
https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
[26]  Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919-2940.
https://www.sciencedirect.com/science/article/pii/0016703795001859
https://doi.org/10.1016/0016-7037(95)00185-9
[27]  Camire, G.E., Lafleche, M.R. and Ludden, J.N. (1993) Archaean Metasedimentary Rocks from the Northwestern Pontiac Subprovince of the Canadian Shield: Chemical Characterization, Weathering and Modelling of the Source Areas. Precambrian Research, 62, 285-305.
https://doi.org/10.1016/0301-9268(93)90026-X
https://www.sciencedirect.com/science/article/pii/030192689390026X
[28]  Gao, S. and Wedepohl, K.H. (1995) The Negative Eu Anomaly in Archean Sedimentary Rocks: Implications for Decomposition, Age and Importance of Their Granitic Sources. Earth and Planetary Science Letters, 133, 81-94.
https://www.sciencedirect.com/science/article/pii/0012821X9500077P
https://doi.org/10.1016/0012-821X(95)00077-P
[29]  Joshi, K.B., Ray, S., Ahmad, T., Manavalan, S. and Aradhi, K.K. (2021) Geochemistry of Meta-Sediments from Neoproterozoic Shimla and Chail Groups of Outer Lesser Himalaya: Implications for Provenance, Tectonic Setting, and Paleo-Weathering Conditions. Geological Journal, 56, 4451-4478.
https://doi.org/10.1002/gj.4183
[30]  Roser, B.P. and Korsch, R.J. (1985) Plate Tectonics and Geochemical Composition of Sandstones: A Discussion. The Journal of Geology, 93, 81-84.
https://doi.org/10.1086/628921
[31]  McLennan, S.M. (1994) Rare Earth Element Geochemistry and the “Tetrad” Effect. Geochimica et Cosmochimica Acta, 58, 2025-2033.
https://www.sciencedirect.com/science/article/pii/0016703794902828
https://doi.org/10.1016/0016-7037(94)90282-8
[32]  Hayashi, K.I., Fujisawa, H., Holland, H.D. and Ohmoto, H. (1997) Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115-4137.
https://www.sciencedirect.com/science/article/pii/S0016703797002147
https://doi.org/10.1016/S0016-7037(97)00214-7
[33]  Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D. and Al-Riyami, R.K. (1996) Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107-118.
https://doi.org/10.1306/D42682CA-2B26-11D7-8648000102C1865D
[34]  Nesbitt, H.W. and Young, G.M. (1984) Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48, 1523-1534.
https://www.sciencedirect.com/science/article/pii/0016703784904083
https://doi.org/10.1016/0016-7037(84)90408-3
[35]  Cullers, R.L., Bock, B. and Guidotti, C. (1997) Elemental Distributions and Neodymium Isotopic Compositions of Silurian Metasediments, Western Maine, USA: Redistribution of the Rare Earth Elements. Geochimica et Cosmochimica Acta, 61, 1847-1861.
https://www.sciencedirect.com/science/article/pii/S0016703797000483
https://doi.org/10.1016/S0016-7037(97)00048-3
[36]  Shaw, D.M. (1968) A Review of K-Rb Fractionation Trends by Covariance Analysis. Geochimica et Cosmochimica Acta, 32, 573-601.
https://www.sciencedirect.com/science/article/pii/0016703768900501
https://doi.org/10.1016/0016-7037(68)90050-1
[37]  Bhatia, M.R. (1983) Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91, 611-627.
https://doi.org/10.1086/628815
[38]  Bhatia, M.R. (1985) Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45, 97-113.
https://doi.org/10.1016/0037-0738(85)90025-9
https://www.sciencedirect.com/science/article/pii/0037073885900259
[39]  Bhatia, M.R. and Crook, K.A. (1986) Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92, 181-193.
https://doi.org/10.1007/BF00375292
[40]  Chen, B. and Jahn, B.M. (2002) Geochemical and Isotopic Studies of the Sedimentary and Granitic Rocks of the Altai Orogen of Northwest China and Their Tectonic Implications. Geological Magazine, 139, 1-13.
https://doi.org/10.1017/S0016756801006100
[41]  Maynard, J.B., Valloni, R. and Yu, H.S. (1982) Composition of Modern Deep-Sea Sands from Arc-Related Basins. Geological Society, London, Special Publications, 10, 551-561.
https://doi.org/10.1144/GSL.SP.1982.010.01.36
[42]  McLennan, S.M. and Taylor, S.R. (1991) Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. The Journal of Geology, 99, 1-21.
https://doi.org/10.1086/629470
[43]  Koffi, A.Y., Kouamelan, A.N., Djro, S.C., Hervé, K.F.J.L., Raoul, T.K., Roland, K.B. and Stéphane, K.G.R. (2018) Pétrographie et origine des métasédiments du domaine SASCA (SW de la Cote d’Ivoire). International Journal of Innovation and Applied Studies, 23, 451-464.
https://www.proquest.com/openview/9df96268e640e1dc8d6695b4fcc9087f/1?pq-origsite=gscholar&cbl=2031961
[44]  Koffi, A.M.P., Yacouba, C., Zié, O. and Inza, C. (2018) Caractéristiques petrographiques et géochimiques des métasédiments de la partie sud-est du bassin de la comoé (nord d’alépé-sud est de la cote d’ivoire). Revue RAMReS, 6, 28-35.
https://www.academia.edu/42413072/Science_de_la_vie_de_la_terre_et_agronomie

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133