全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploring the Therapeutic Potential of Algae-Based Sheet Masks in Skincare: A Comprehensive Study of Cosmetological Benefits and Microbiome Balanced Interactions

DOI: 10.4236/jcdsa.2023.134023, PP. 277-301

Keywords: Algae, Sheet Mask, Calcium, Skin Aging, Hydration, Microbiome, Skin pH

Full-Text   Cite this paper   Add to My Lib

Abstract:

Research in dermatology is exploring bio-compatible materials like alginate and calcium sulphate for use in skincare products, such as facial sheet masks. Alginate (from seaweed) has wound healing and hydration properties, while calcium assists in maintaining skin balance and protection. In this study we explore the effects of an algae-calcium based sheet mask on skin. Materials and Methods: In-vitro studies investigated the purpose, process and effectiveness of an algae-calcium dry sheet mask (Algae Mask-MedSkin Solutions Dr. Suwelack). The mask is made from brown algae and undergoes a lyophilization and stabilization process to form its final structure. The masks properties were tested using scanning electron microscopy (SEM) and its performance was assessed on human skin biopsies. Various tests were performed, such as measuring the release of ionic constituents and concentration of calcium ions, and the fibroblast cell-activating effect. Clinical evaluations and skin microbiome assessment were conducted on healthy volunteers to assess the mask’s effect on the skin. Results and Conclusion: The study validates the benefits of macro algae-based sheet masks for skincare, with significant cosmetic effects and high tolerance due to its composition. Notably, the algae based mask releases substantial calcium ions, hydrates, minimizes skin roughness and wrinkles, regulates pH levels, and maintains skin microbiome diversity. It also decreases Corynebacterium species found on the skin, suggesting potential to modify skin microbiome.

References

[1]  Deng, Y., Yang, N., Okoro, O., Shavandi, A. and Nie, L. (2021) Alginate-Based Composite and Its Biomedical Applications. In: Deniz, I., Imamoglu, E. and Keskin-Gundogdu, T., Eds., Properties and Applications of Alginates, InTechOpen, London.
https://doi.org/10.5772/intechopen.99494
[2]  Adamiak, K. and Sionkowska, A. (2023) State of Innovation in Alginate-Based Materials. Marine Drugs, 21, Article No. 353. https://doi.org/10.3390/md21060353
[3]  Ahmad Raus, R., Wan Nawawi, W.M.F. and Nasaruddin, R.R. (2021) Alginate and Alginate Composites for Biomedical Applications. Asian Journal of Pharmaceutical Sciences, 16, 280-306. https://doi.org/10.1016/j.ajps.2020.10.001
[4]  Zdiri, K., Cayla, A., Elamri, A., Erard, A. and Salaun, F. (2022) Alginate-Based Bio-Composites and Their Potential Applications. Journal of Functional Biomaterials, 13, Article No. 117. https://doi.org/10.3390/jfb13030117
[5]  Kuznetsova, T., Andrukov, B., Besednova, N., Zaporozhets, T. and Kalinin, A. (2020) Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. Journal of Marine Science and Engineering, 8, Article No. 481. https://doi.org/10.3390/jmse8070481
[6]  Malektaj, H., Drozdov, A.D. and de Claville Christiansen, J. (2023) Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cations. Polymers, 15, Article No. 3012. https://doi.org/10.3390/polym15143012
[7]  Zhang, X., Wang, X., Fan, W., Liu, Y., Wang, Q. and Weng, L. (2022) Fabrication, Property and Application of Calcium Alginate Fiber: A Review. Polymers, 14, Article No. 3227. https://doi.org/10.3390/polym14153227
[8]  Wang, M., Sun, Y., Li, L., Wu, P., Dkw, O. and Shi, H. (2021) Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Frontiers in Pharmacology, 12, Article ID: 702264.
https://doi.org/10.3389/fphar.2021.702264
[9]  Tu, C.L., Oda, Y., Komuves, L. and Bikle, D.D. (2004) The Role of the Calcium-Sensing Receptor in Epidermal Differentiation. Cell Calcium, 35, 265-273.
https://doi.org/10.1016/j.ceca.2003.10.019
[10]  Bikle, D.D., Xie, Z. and Tu, C.L. (2012) Calcium Regulation of Keratinocyte Differentiation. Expert Review of Endocrinology & Metabolism, 7, 461-472.
https://doi.org/10.1586/eem.12.34
[11]  Subramaniam, T., Fauzi, M.B., Lokanathan, Y. and Law, J.X. (2021) The Role of Calcium in Wound Healing. International Journal of Molecular Sciences, 22, Article No. 6486. https://doi.org/10.3390/ijms22126486
[12]  Lee, S.E. and Lee, S.H. (2018) Skin Barrier and Calcium. Annals of Dermatology, 30, 265-275. https://doi.org/10.5021/ad.2018.30.3.265
[13]  Behne, M.J., Sanchez, S., Barry, N.P., Kirschner, N., Meyer, W., Mauro, T.M., Moll, I. and Gratton, E. (2011) Major Translocation of Calcium upon Epidermal Barrier Insult: Imaging and Quantification via FLIM/Fourier Vector Analysis. Archives of Dermatological Research, 303, 103-115. https://doi.org/10.1007/s00403-010-1113-9
[14]  Lee, S.H., Elias, P.M., Feingold, K.R. and Mauro, T. (1994) A Role for Ions in Barrier Recovery after Acute Perturbation. Journal of Investigative Dermatology, 102, 976-979. https://doi.org/10.1111/1523-1747.ep12384225
[15]  Menon, G.K., Elias, P.M., Lee, S.H. and Feingold, K.R. (1992) Localization of Calcium in Murine Epidermis Following Disruption and Repair of the Permeability Barrier. Cell and Tissue Research, 270, 503-512.
https://doi.org/10.1007/BF00645052
[16]  Elias, P., Ahn, S., Brown, B., Crumrine, D. and Feingold, K.R. (2002) Origin of the Epidermal Calcium Gradient: Regulation by Barrier Status and Role of Active vs Passive Mechanisms. Journal of Investigative Dermatology, 119, 1269-1274.
https://doi.org/10.1046/j.1523-1747.2002.19622.x
[17]  Dorozhkin, S.V. (2010) Bioceramics of Calcium Orthophosphates. Biomaterials, 31, 1465-1485. https://doi.org/10.1016/j.biomaterials.2009.11.050
[18]  Benson, H.A. (2005) Transdermal Drug Delivery: Penetration Enhancement Techniques. Current Drug Delivery, 2, 23-33. https://doi.org/10.2174/1567201052772915
[19]  Ene, R., Nica, M., Ene, D., Cursaru, A. and Cirstoiu, C. (2021) Review of Calcium-Sulphate-Based Ceramics and Synthetic Bone Substitutes Used for Antibiotic Delivery in PJI and Osteomyelitis Treatment. EFORT Open Reviews, 6, 297-304.
https://doi.org/10.1302/2058-5241.6.200083
[20]  Tsutsumi, M., Denda, S., Inoue, K., Ikeyama, K. and Denda, M. (2009) Calcium Ion Gradients and Dynamics in Cultured Skin Slices of Rat Hindpaw in Response to Stimulation with ATP. Journal of Investigative Dermatology, 129, 584-589.
https://doi.org/10.1038/jid.2008.299
[21]  Elias, P.M., Ahn, S. K., Denda, M., Brown, B.E., Crumrine, D., Kimutai, L.K., Kömüves, L., Lee, S.H. and Feingold, K.R. (2002) Modulations in Epidermal Calcium Regulate the Expression of Differentiation-Specific Markers. Journal of Investigative Dermatology, 119, 1128-1136.
https://doi.org/10.1046/j.1523-1747.2002.19512.x
[22]  Mauro, T., Bench, G., Sidderas-Haddad, E., Feingold, K., Elias, P. and Cullander, C. (1998) Acute Barrier Perturbation Abolishes the Ca2+ and K+ Gradients in Murine Epidermis: Quantitative Measurement Using PIXE. Journal of Investigative Dermatology, 111, 1198-1201. https://doi.org/10.1046/j.1523-1747.1998.00421.x
[23]  Menon, G.K., Elias, P.M. and Feingold, K.R. (1994) Integrity of the Permeability Barrier Is Crucial for Maintenance of the Epidermal Calcium Gradient. British Journal of Dermatology, 130, 139-147.
https://doi.org/10.1111/j.1365-2133.1994.tb02892.x
[24]  Thiyagarasaiyar, K., Goh, B.H., Jeon, Y.J. and Yow, Y.Y. (2020) Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Marine Drugs, 18, Article No. 323. https://doi.org/10.3390/md18060323
[25]  álvarez-Gómez, F., Korbee, N., Casas-Arrojo, V., Abdala-Díaz, R.T. and Figueroa, F.L. (2019) UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules, 24, Article No. 341.
https://doi.org/10.3390/molecules24020341
[26]  Saadaoui, I., Rasheed, R., Abdulrahman, N., Bounnit, T., Cherif, M., Al Jabri, H. and Mraiche, F. (2020) Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Marine Drugs, 18, Article No. 197. https://doi.org/10.3390/md18040197
[27]  Gupta, S. and Abu-Ghannam, N. (2011) Recent Developments in the Application of Sea-Weeds or Seaweed Extracts as a Means for Enhancing the Safety and Quality Attributes of Foods. Innovative Food Science & Emerging Technologies, 12, 600-609.
https://doi.org/10.1016/j.ifset.2011.07.004
[28]  Cherry, P., O’Hara, C., Magee, P.J., McSorley, E.M. and Allsopp, P.J. (2019) Risks and Benefits of Consuming Edible Seaweeds. Nutrition Reviews, 77, 307-329.
https://doi.org/10.1093/nutrit/nuy066
[29]  Menaa, F., Wijesinghe, U., Thiripuranathar, G., Althobaiti, N.A., Albalawi, A.E., Khan, B.A. and Menaa, B. (2021) Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Marine Drugs, 19, Article No. 484.
https://doi.org/10.3390/md19090484
[30]  Khanna, P., Kaur, A. and Goyal, D. (2019) Algae-Based Metallic Nanoparticles: Synthesis, Characterization and Applications. Journal of Microbiological Methods, 163, Article ID: 105656. https://doi.org/10.1016/j.mimet.2019.105656
[31]  Menaa, F., Wijesinghe, P.A.U.I., Thiripuranathar, G., Uzair, B., Iqbal, H., Khan, B.A. and Menaa, B. (2020) Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions. Marine Drugs, 18, Article No. 641.
https://doi.org/10.3390/md18120641
[32]  Hamid, N., Ma, Q., Boulom, S., Liu, T., Zheng, Z., Balbas, J. and Robertson, J. (2015) Seaweed Minor Constituents. In: Tiwari, B.K. and Troy, D.J., Eds., Seaweed Sustainability, Elsevier, Amsterdam, 193-242.
https://doi.org/10.1016/B978-0-12-418697-2.00008-8
[33]  Havas, F., Krispin, S., Cohen, M., Loing, E., Farge, M., Suere, T. and Attia-Vigneau, J. (2022) A Dunaliella salina Extract Counteracts Skin Aging under Intense Solar Irradiation Thanks to Its Antiglycation and Anti-Inflammatory Properties. Marine Drugs, 20, Article No. 104. https://doi.org/10.3390/md20020104
[34]  Janssens-Böcker, C., Wiesweg, K. and Doberenz, C. (2023) The Tolerability and Effectiveness of Marine-Based Ingredients in Cosmetics: A Split-Face Clinical Study of a Serum Spray Containing Fucus vesiculosus Extract, Ulva lactuca Extract, and Ectoin. Cosmetics, 10, Article No. 93. https://doi.org/10.3390/cosmetics10030093
[35]  Grether-Beck, S., Marini, A., Jaenicke, T., Brenden, H., Felsner, I., Aue, N., Brynjolfsdottir, A. and Krutmann, J. (2022) Blue Lagoon Algae Improve Uneven Skin Pigmentation: Results from in Vitro Studies and from a Monocentric, Randomized, Double-Blind, Vehicle-Controlled, Split-Face Study. Skin Pharmacology and Physiology, 35, 77-86. https://doi.org/10.1159/000518781
[36]  Zhou, L., Chen, J., Chen, T., Chang, H., Cui, W., She, Y., Li, Z., Tang, W., Yuan, D., Chen, Z. and Su, J. (2022) Investigation of Actual Exposure to Facial Sheet Mask Preceding Its Risk Assessment. Scientific Reports, 12, Article No. 1215.
https://doi.org/10.1038/s41598-022-05351-3
[37]  Cheng, S., Leow, Y.H., Goh, C.L. and Goon, A. (2014) Contact Sensitivity to Preservatives in Singapore: Frequency of Sensitization to 11 Common Preservatives 2006-2011. Dermatitis, 25, 77-82. https://doi.org/10.1097/DER.0000000000000031
[38]  Beene, K.M., Scheman, A., Severson, D. and Reeder, M.J. (2017) Prevalence of Preservatives across All Product Types in the Contact Allergen Management Program. Dermatitis, 28, 81-87. https://doi.org/10.1097/DER.0000000000000259
[39]  Hennings, H., Michael, D., Cheng, C., Steinert, P., Holbrook, K. and Yuspa, S.H. (1980) Calcium Regulation of Growth and Differentiation of Mouse Epidermal Cells in Culture. Cell, 19, 245-254. https://doi.org/10.1016/0092-8674(80)90406-7
[40]  Huang, Y.-C., Wang, T.-W., Sun, J.-S. and Lin, F.-H. (2006) Effect of Calcium Ion Concentration on Keratinocyte Behaviors in the Defined Media. Biomedical Engineering: Applications, Basis and Communications, 18, 37-41.
https://doi.org/10.4015/S1016237206000087
[41]  Borowiec, A.-S., Delcourt, P., Dewailly, E. and Bidaux, G. (2013) Optimal Differentiation of in Vitro Keratinocytes Requires Multifactorial External Control. PLOS ONE, 8, e77507. https://doi.org/10.1371/journal.pone.0077507
[42]  Boyce, S.T. and Ham, R.G. (1983) Calcium-Regulated Differentiation of Normal Human Epidermal Keratinocytes in Chemically Defined Clonal Culture and Serum-Free Serial Culture. Journal of Investigative Dermatology, 81, 33s-40s.
https://doi.org/10.1111/1523-1747.ep12540422
[43]  Xie, Z., Singleton, P.A., Bourguignon, L.Y. and Bikle, D.D. (2005) Calcium-Induced Human Keratinocyte Differentiation Requires src- and fyn-Mediated Phosphatidylinositol 3-Kinase-Dependent Activation of Phospholipase C-gamma1. Molecular Biology of the Cell, 16, 3236-3246. https://doi.org/10.1091/mbc.e05-02-0109
[44]  Streubel, M.K., Neuhofer, C., Bischof, J., Steinbacher, P., Russe, E., Wechselberger, G., Richter, K. and Rinnerthaler, M. (2018) From Mice to Men: An Evolutionary Conserved Breakdown of the Epidermal Calcium Gradient and Its Impact on the Cornified Envelope. Cosmetics, 5, Article No. 35.
https://doi.org/10.3390/cosmetics5020035
[45]  Tregear, R.T. (1966) The Permeability of Mammalian Skin to Ions. Journal of Investigative Dermatology, 46, 16-23. https://doi.org/10.1038/jid.1966.4
[46]  Waring, R. (2014) Report on Magnesium Sulfate across the Skin. School of Biosciences, University of Birmingham, Birmingham.
[47]  Pineau, A., Guillard, O., Favreau, F., Marrauld, A. and Fauconneau, B. (2012) In Vitro Study of Percutaneous Absorption of Aluminum from Antiperspirants through Human Skin in the Franz Diffusion Cell. Journal of Inorganic Biochemistry, 110, 21-26. https://doi.org/10.1016/j.jinorgbio.2012.02.013
[48]  Wahlberg, J.E. (1965) Percutaneous Absorption of Sodium Chromate (51Cr), Cobaltous (58Co), and Mercuric (203Hg) Chlorides through Excised Human and Guinea Pig Skin. Acta Dermato-Venereologica, 45, 415-426.
[49]  Bolzinger, M.A., Bolot, C., Galy, G., Chabanel, A., Pelletier, J. and Briançon, S. (2010) Skin Contamination by Radiopharmaceuticals and Decontamination Strategies. International Journal of Pharmaceutics, 402, 44-49.
https://doi.org/10.1016/j.ijpharm.2010.09.027
[50]  Laudańska, H., Lemancewicz, A., Kretowska, M., Reduta, T. and Laudański, T. (2002) Permeability of Human Skin to Selected Anions and Cations—In Vitro Studies. Research Communications in Molecular Pathology and Pharmacology, 112, 16-26.
[51]  Ridaura, V.K., Bouladoux, N., Claesen, J., Chen, Y.E., Byrd, A.L., Constantinides, M.G., Merrill, E.D., Tamoutounour, S., Fischbach, M.A. and Belkaid, Y. (2018) Contextual Control of Skin Immunity and Inflammation by Corynebacterium. Journal of Experimental Medicine, 215, 785-799. https://doi.org/10.1084/jem.20171079
[52]  JDC, SLK and GJD-H (2009) Ralph D. Feigin, M.D.: April 3, 1938-August 14, 2008. In: Feigin, R.D., et al., Eds., Feigin and Cherry’s Textbook of Pediatric Infectious Diseases, 6th Edition, W.B. Saunders, Philadelphia, 5.
https://doi.org/10.1016/B978-1-4160-4044-6.50002-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133