全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LightGBM与深度兴趣网络Stacking融合模型的商品推荐算法
Commodity Recommendation Algorithm Based on the Fusion Model of LightGBM and Deep Interest Network Stacking

DOI: 10.12677/SA.2023.126157, PP. 1535-1546

Keywords: 商品推荐,协同过滤,多路召回,LightGBM,深度兴趣网络
Commodity Recommendation
, Collaborative Filtering, Multiple Recall, LightGBM, Deep Interest Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着电子商务平台的迅速发展,如何提高用户对平台的忠诚度并稳定客流,进而调整平台运营方向以获得持续的收益,成为当前电子商务平台急需解决的关键问题。常见于电商平台的推荐系统利用用户的购买、收藏、浏览等数据,采用特定的算法向用户推荐商品。本研究提出了一种基于LightGBM与深度兴趣网络Stacking融合模型的商品推荐的新解决方案。该模型根据用户过去一年的交易记录提取相应的商品特征和用户特征,整合协同过滤的多路召回策略与这些特征,并将其作为模型的输入,以预测下单客户可能购买的产品并进行商品推荐。研究结果表明,在测试数据上,相对于其他常用推荐算法,本文提出的模型具有更高的准确性、更快的预测速度和更好的推荐效果。这些研究结果为电子商务企业提供了改进服务的契机,为相关研究和实践提供了有益的参考和借鉴,为商品推荐问题的解决提供了有价值的参考和帮助。
With the rapid development of e-commerce platforms, how to improve user loyalty to the platform and stabilize customer flow, and then adjust the direction of platform operation to obtain sustained revenue, has become a key issue that e-commerce platforms urgently need to solve. Recommenda-tion systems commonly used in e-commerce platforms utilize user’s purchase, collection, browsing and other data to recommend commodities to users using specific algorithms. In this study, we propose a new solution for commodity recommendation based on the fusion model of LightGBM and deep interest network Stacking. The model extracts the corresponding commodity features and us-er features based on the user’s transaction records in the past year, integrates a collaborative fil-tering multiplexed recall strategy with these features, and uses them as inputs to the model in or-der to predict the commodities that the customers placing the order are likely to purchase and make commodity recommendations. The research results show that the model proposed in this paper has higher accuracy, faster prediction speed, and better recommendation effect than other commonly used recommendation algorithms on the test data. These findings provide e-commerce enterprises with opportunities to improve their services, provide useful references and lessons for related research and practice, and provide valuable references and assistance in solving the prob-lem of commodity recommendation.

References

[1]  孙光福, 吴乐, 刘淇, 等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11): 2721-2733.
[2]  包增辉, 宋余庆. 协同过滤算法的多样性研究[J]. 无线通信技术, 2013, 22(3): 5-9.
[3]  Belkin, N.J. and Croft, W.B. (1992) Infor-mation Filtering and Information Retrieval: Two Sides of the Same Coin? Communications of the ACM, 35, 29-38.
https://doi.org/10.1145/138859.138861
[4]  Adomavicius, G. (2012) Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques. IEEE Transactions on Knowledge & Data Engineering, 24, 896-911.
https://doi.org/10.1109/TKDE.2011.15
[5]  Linden, G., Smith, B. and York, J. (2003) Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, 7, 76-80.
https://doi.org/10.1109/MIC.2003.1167344
[6]  黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
[7]  Hu, Z., Wang, J., Yan, Y., et al. (2021) Neural Graph Personalized Ranking for Top-N Recommendation. Knowledge-Based Systems, 213, Article ID: 106426.
https://doi.org/10.1016/j.knosys.2020.106426
[8]  邓灵斌, 申慧. 电子商务平台商品推荐信息特性对消费者购买意愿的影响实证研究[J]. 南华大学学报(社会科学版), 2019, 20(2): 60-65.
[9]  Xing, L.J., Feng, X.W., Chen, H.M., Wang, Y. and Zhang, Y. (2020) Research on Fused Sorting Based on Logical Regression in News Recom-mendation System. IOP Conference Series: Earth and Environmental Science, 510, Article ID: 062029.
https://doi.org/10.1088/1755-1315/510/6/062029
[10]  Wang, D., Zhang, Y. and Zhao, Y. (2017) LightGBM: An Effective miRNA Classification Method in Breast Cancer Patients. Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics, Newark, 18-20 October 2017, 7-11.
https://doi.org/10.1145/3155077.3155079
[11]  王天峥, 汤健, 夏恒, 等. 基于XGBoost串并联集成的数据驱动MSWI全流程模型[J/OL]. 计算机集成制造系统, 2023: 1-20.
http://kns.cnki.net/kcms/detail/11.5946.TP.20230920.1143.014.html
[12]  王伟, 马乾伦, 白振华, 等. 基于梯度提升决策树的冷轧高强钢卷力学性能预测[J]. 中国机械工程, 2023, 34(18): 2222-2229.
[13]  Friedman, J. (2001) Greedy Func-tion Approximation: A Gradient Boosting Machine. Annals of Statistics, 29, 1189-1232.
https://doi.org/10.1214/aos/1013203451
[14]  Zhou, G., Zhu, X., Song, C., et al. (2018) Deep Interest Network for Click-Through Rate Prediction. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1059-1068.
https://doi.org/10.1145/3219819.3219823
[15]  王飞, 黄涛, 杨晔. 基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究[J]. 计算机科学, 2022, 49(z1): 784-789.
[16]  宋涛, 赵明富, 刘帅, 等. 基于有序视觉词袋模型的图像相似性衡量[J]. 华中科技大学学报(自然科学版), 2020, 48(8): 67-72, 78.
[17]  董伟, 董思遥, 王聪, 陶金虎. 基于TF-IDF算法和DTM模型的网络学习社区主题分析[J]. 现代教育技术, 2022, 32(2): 90-98.
[18]  He, K., Zhang, X., Ren, S., et al. (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1026-1034.
https://doi.org/10.1109/ICCV.2015.123
[19]  Edmonds, R.G. (1984) A Theo-retical Basis for Hedonic Regression: A Research Primer. Real Estate Economics, 12, 72-85.
https://doi.org/10.1111/1540-6229.00311
[20]  徐士伟, 苏业辉, 李慧文, 等. 基于熵权法的枢纽内公交站场布局评价研究[J]. 交通运输系统工程与信息, 2023, 23(5): 104-112.
[21]  邵垒, 彭阳, 张超, 等. 基于熵权改进TOPSIS理论的富氮气体最优分配方式研究[J/OL]. 航空动力学报, 2023: 1-9.
https://doi.org/10.13224/j.cnki.jasp.20210486
[22]  师奥翔, 张洁. 基于改进RFM模型的电商用户价值分类的研究[J]. 计算机技术与发展, 2022, 32(12): 123-128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133