|
某酒精制造企业恶臭污染分析评估
|
Abstract:
随着居民对生活环境质量要求的不断提高,恶臭投诉事件也在不断增多,与此同时企业及环境部门对于污染管理的要求也在增加。本研究选取易引起恶臭投诉的酒精制造企业,对企业进行调研、采样和臭气浓度分析,在此基础上,选用小尺度空气质量模型AERMOD对其进行扩散模拟,分析其对周边恶臭影响范围及敏感点的影响情况。结果表明,该企业排气筒臭气浓度最低为4168 (无量纲),最高为229086 (无量纲)。若该企业处于采样时的工况条件,其影响主要为东部。东部方向最远影响距离为2.1 km,东南部其次为2 km。敏感点1#、敏感点2#的异味发生频率都在15%~20%之间。该企业对周边敏感点及周边恶臭影响较为严重:敏感点1#在全年最不利的气象条件下,臭气浓度可超过400;其次敏感点2#在全年最大小时臭气浓度均可达到200以上。
With the continuous improvement of residents’ requirements for the quality of the living envi-ronment, odor complaints are also increasing, and at the same time, the requirements of enter-prises and environmental departments for pollution management are also increasing. In this study, alcohol manufacturing enterprises that cause easily odor complaints were investigated, sampling, and odor concentration analysis. On this basis, the small-scale air quality model AERMOD was selected to conduct diffusion simulation and analyze their influence on the influence range and sensitive points of surrounding odor. The results show that the lowest odor concentration of the exhaust cylinder is 4168 and the highest is 229086. If the enterprise is in the working condition of sampling, its influence is mainly in the East. The farthest impact distance in the east is 2.1 km, and 2km in the southeast. The odor occurrence frequency of sensitive point 1 # and sensitive point 2 # is between 15% and 20%. The enterprise has a serious impact on the surrounding sensitive points and the surrounding odor: the sensitive point 1 #, the odor concentration can exceed 400 under the most unfavorable meteorological conditions of the whole year; secondly, the sensitive point 2 # can reach more than 200 in the maximum hours of the annual odor concentration.
[1] | 王亘, 王宗爽, 王元刚, 等. 国内外恶臭污染控制标准研究[J]. 环境科学与技术, 2012(S2): 147-151. |
[2] | 杨伟华, 李伟芳, 韩萌, 等. 基于现场监测的异味污染暴露-效应评价[J]. 环境化学, 2019, 38(7): 1628-1635. |
[3] | 徐欣腾. 工业园区恶臭污染及源解析的研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2021. |
[4] | 环境保护部. HJ 905-2017恶臭污染环境监测技术规范[S]. 北京: 中国环境出版社, 2017. |
[5] | 环境保护部. HJ 194-2017环境空气质量手工监测技术规范[S]. 北京: 中国环境出版社, 2017. |
[6] | 生态环境部. HJ 1262-2022环境空气和废气、臭气的测定: 三点比较式臭袋法[S]. 北京: 中国环境出版社, 2022. |
[7] | 刘梦, 伯鑫. CALPUFF-AERMOD大气预测模式耦合系统[J]. 环境科学与管理, 2012, 37(7): 118-123. |
[8] | 生态环境部. HJ 2.2-2018 环境影响评价技术导则 大气环境[S]. 北京: 中国环境出版社, 2018. |
[9] | Zhang, Y., Ning, X., Li, Y., et al. (2021) Impact Assessment of Odour Nuisance, Health Risk and Variation Originating from the Landfill Surface. Waste Management, 126, 771-780. https://doi.org/10.1016/j.wasman.2021.03.055 |
[10] | Chemel, C., Riesenmey, C., Batton-Hubert, M., et al. (2012) Odour-Impact Assessment around a Landfill Site from Weather-Type Classification, Complaint Inventory and Numerical Simulation. Journal of Environmental Management, 93, 85-94. https://doi.org/10.1016/j.jenvman.2011.08.016 |
[11] | 国家环境保护局. GB 14554-93恶臭污染物排放标准[S]. 北京: 中国环境出版社, 1993. |
[12] | German EPA. (2004) Detection and Assessment of Odour in Ambinet Air: Guideline on Odour in Ambient Air.
https://www.lanuv.nrw.de/fileadmin/lanuv/luft/gerueche/pdf/GOAASept08.pdf |