全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚热带森林公园土壤微生物量碳分布的影响因素研究
Distribution and Influencing Factors of Soil Microbiomass Carbon in Subtropical Forest Parks

DOI: 10.12677/AEP.2023.136148, PP. 1237-1246

Keywords: 土壤碳库,森林土壤,城市森林公园,养分化学计量比,驱动因素
Soil Carbon Pool
, Forest Soil, City Urban Park, Stoichiometric Ratio of Nutrient, Driving Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究以武汉市八分山、青龙山、马鞍山、磨山和九峰山森林公园为对象,研究土壤微生物量碳的分布特征及其土壤环境影响因子。在每座山选择8种主要树种,共设置120个采样点,于2021年9月至11月进行土壤样品采集,采用抖落法采集根际土壤样品。结果显示:(1) 八分山(57.42~502.22 mg?kg?1)、青龙山(148.59~563.78 mg?kg?1)、马鞍山(270.76~908.44 mg?kg?1)和磨山(137.45 ~ 654.81 mg?kg?1)不同植物群落土壤微生物量碳间差异显著,九峰山(224.18~595.56 mg?kg?1)不同植物土壤微生物量碳间无显著差异。(2) 青龙山土壤微生物量碳与铵态氮(r = 0.462, p < 0.05)呈显著正相关;马鞍山土壤微生物量碳与有机碳(r = 0.648, p < 0.01)、硝态氮(r = 0.434, p < 0.05)、铵态氮(r = 0.474, p < 0.05)、无机氮(r = 0.532, p < 0.01)、C:P (r = 0.560, p < 0.01)和N:P (r = 0.420, p < 0.05)呈显著正相关;九峰山土壤微生物量碳与铵态氮(r = 0.578, p < 0.01)、无机氮(r = 0.573, p < 0.01)、C:P (r = 0.551, p < 0.01)和N:P (r = 0.465, p < 0.05)呈显著正相关;八分山和磨山土壤微生物量碳均与环境因子无显著差异。(3) 五座森林公园的土壤微生物量熵碳范围在1%~4%。层次分割法表明土壤微生物量碳的关键驱动因子为有机碳。
To analyze the distribution characteristics and influencing factors of soil microbial carbon, and to explore the relationship between soil microbes and environmental factors. The study was con-ducted in the forest parks of Bafen Mountain, Qinglong Mountain, Maanshan Mountain, Mashan Mountain and Jiufeng Mountain in Wuhan City, and eight major constituent tree species were se-lected for each mountain, with a total of 120 sampling points, and soil samples were collected from September to November 2021, and inter-root soil samples were collected by the shaking drop method. The results showed that: (1) There were no significant differences in soil microbiomass carbon among different plant communities in Bafen Mountain 57.42~502.22 mg?kg?1), Qinglong Mountain(148.59~563.78 mg?kg?1), Ma’anshan Mountain (270.76~908.44 mg?kg?1), and Mashan Mountain (137.45 ~ 654.81 mg?kg?1) showed significant differences among soil microbial mass carbon of different plant communities, and Jiu Feng Shan (224.18~595.56 mg?kg?1) showed non-significant differences among soil microbial mass carbon of different plants. (2) There was a significant positive correlation between soil microbial and ammonium nitrogen (r = 0.462, p < 0.05) in Qinglong, and a significant positive correlation between soil microbial amount carbon and organic carbon (r = 0.648, p < 0.01), nitrate nitrogen (r = 0.434, p < 0.05), ammonium nitrogen (r = 0.474, p < 0.05), inorganic nitrogen (r = 0.532, p < 0.01), C:P (r = 0.560, p < 0.01) and N:P (r = 0.420, p < 0.05) were significantly positively correlated; soil microbial amount carbon in Jiufeng was significantly positively correlated with ammonium nitrogen (r = 0.578, p < 0.01), inorganic nitrogen (r = 0.573, p < 0.01), C:P (r = 0.551, p < 0.01) and N:P (r = 0.465, p < 0.05) were significantly

References

[1]  王薇菡, 虞依娜, 谢嘉淇, 等. 中国南亚热带不同造林模式碳汇林土壤碳、氮、磷的积累及化学计量特征[J]. 生态学报, 2023, 43(5): 1793-1803.
httpVan Bruggen, A.H.C. and Semenov, A.M. (2000) In Search of Biological In-dicators for Soil Health and Disease Suppression. Applied Soil Ecology, 15, 13-24.
https://doi.org/10.1016/S0929-1393(00)00068-8
http姜培坤, 徐秋芳, 俞益武. 土壤微生物量碳作为林地土壤肥力指标[J]. 浙江林学院学报, 2002, 19(1): 17-19.
http宿少锋, 王小燕, 林之盼, 等. 热带地区6种植被类型土壤微生物功能多样性特征[J]. 云南农业大学学报(自然科学), 2022, 37(3): 505-514.
http陈新月, 姚晓东, 曾文静, 等. 北方农牧交错带草地土壤微生物量碳空间格局及驱动因素[J]. 北京大学学报(自然科学版), 2021, 57(2): 250-260.
http王琴, 李菊, 孙辉. 海拔梯度上西南亚高山-高山土壤微生物生物量碳季节动态[J]. 四川农业大学学报, 2013, 31(4): 386-392.
http黄伟伟, 杨勇, 陈丰农. 杭州校园中不同植被对PM2.5的吸附能力[J]. 环境科学研究, 2018, 31(7): 1233-1240.
http武汉市园林和林业局. 2021年武汉市绿化状况公报[EB/OL].
http://ylj.wuhan.gov.cn/zwgk/zwxxgkzl_12298/tjxx/lhgb_12361/202203/t20220317_1941383.shtml, 2022-03-17.
http王晓荣, 胡文杰, 庞宏东, 等. 湖北省主要森林类型土壤理化性质及土壤质量[J]. 中南林业科技大学学报, 2020, 40(11): 156-166.
http尹忠春, 施河丽, 向必坤, 等. 湖北宣恩烟区植烟土壤pH状况及与其他土壤指标的关系[J]. 湖北农业科学, 2021, 60(S2): 129-135, 139.
httpBrookes, P.C., Landman, A., Pruden, G. and Jenkinson, D.S. (1985) Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil. Soil Biology and Biochemistry, 17, 837-842.
https://doi.org/10.1016/0038-0717(85)90144-0
httpBrookes, P.C., Powlson, D.S. and Jenkinson, D.S. (1982) Measurement of Microbial Biomass Phosphorus in Soil. Soil Biology and Biochemistry, 14, 319-329.
https://doi.org/10.1016/0038-0717(82)90001-3
httpVance, E.D., Brookes, P.C. and Jenkinson, D.S. (1987) An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biology and Biochemistry, 19, 703-707.
https://doi.org/10.1016/0038-0717(87)90052-6
http杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008.
http陈闽昆, 王邵军, 陈武强, 等. 蚂蚁筑巢对西双版纳热带森林土壤微生物生物量碳及熵的影响[J]. 应用生态学报, 2019, 30(9): 2973-2982.
http陈小花, 陈宗铸, 雷金睿, 等. 东寨港不同植物群落土壤微生物量碳氮及养分特征[J]. 林业资源管理, 2021(6): 97-104.
http贾国梅, 何立, 程虎, 等. 三峡库区不同植被土壤微生物量碳氮磷生态化学计量特征[J]. 水土保持研究, 2016, 23(4): 23-27.
http胡宗达, 刘世荣, 史作民, 等. 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征[J]. 林业科学研究, 2012, 25(3): 261-268.
http易桂田, 王晓丽, 刘占锋, 等. 亚热带地区不同人工林配置下土壤微生物量碳及微生物墒的年际动态[J]. 生态环境学报, 2018, 27(2): 224-231.
http李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征[J]. 北京林业大学学报, 2020, 42(12): 51-62.
httpWang, B.R., An, S.S., Liang, C., et al. (2021) Microbial Necromass as the Source of Soil Organic Carbon in Global Ecosystems. Soil Biology and Bio-chemistry, 162, Article ID: 108422.
https://doi.org/10.1016/j.soilbio.2021.108422
http周莎, 马寰菲, 王洁莹, 等. 我国森林土壤微生物生物量碳的纬度分布特征及影响因子[J]. 林业科学, 2022, 58(2): 49-57.
http赵高山, 司艳娥, 孔都斯?帕尔哈提, 等. 中天山北麓不同草地类型微生物量及理化性质垂直地带性特征[J]. 西南农业学报, 2023, 36(6): 1206-1215.
http张雅茜, 方晞, 冼应男, 等. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 2019, 39(14): 5326-5338.
http张海燕. 有关黑土微生物量与土壤肥力关系的研究[D]: [硕士学位论文]. 沈阳: 沈阳农业大学, 2005.
httpTian, H.Q., Cheng, G.S., Zhang, C., et al. (2010) Pattern and Variation of C:N:P Ratios in China’s Soils: A Synthesis of Observational Data. Biogeochemistry, 98, 139-151.
https://doi.org/10.1007/s10533-009-9382-0
http黄郡, 范泽宁. 土壤碳氮磷生态化学计量特征及影响因素概述[J]. 现代农业研究, 2020, 49(1): 73-76.
http

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133