|
肌源性因子参与骨与脂肪形成的研究进展及其应用前景
|
Abstract:
肌源性因子是一种由肌肉分泌的细胞因子或蛋白质,具有调控肌肉发育和生长的作用。最新研究发现,肌源性因子在骨与脂肪的形成中也发挥了重要作用。本文综述了肌源性因子在骨与脂肪形成中的功能及其应用前景,为该领域的进一步探索提供参考。
Muscle derived factors are cytokines or proteins secreted by muscles that regulate muscle devel-opment and growth. The latest research has found that myogenic factors also play an important role in the formation of bone and fat. This article reviews the functions and application prospects of my-ogenic factors in bone and fat formation, providing reference for further exploration in this field.
[1] | Gries, K.J., Zysik, V.S., Jobe, T.K., Griffin, N., Leeds, B.P. and Lowery, J.W. (2022) Muscle-Derived Factors Influ-encing Bone Metabolism. Seminars in Cell & Developmental Biology, 123, 57-63.
https://doi.org/10.1016/j.semcdb.2021.10.009 |
[2] | Duarte, A.C.G.O., Speretta, G.F., Teixeira, A.M. and Lira, F.S. (2022) Editorial: Adipose Tissue and Skeletal Muscle as Endocrine Organs: Role of Cytokines in Health and Disease. Frontiers in Physiology, 13, Article ID: 1069431.
https://doi.org/10.3389/fphys.2022.1069431 |
[3] | Chen, W., Wang, L., You, W. and Shan, T. (2021) Myokines Mediate the Cross Talk between Skeletal Muscle and Other Organs. Journal of Cellular Physiology, 236, 2393-2412. https://doi.org/10.1002/jcp.30033 |
[4] | 谢犇, 杨杜斌, 王勇平. 骨髓间充质干细胞成骨分化机制研究进展[J]. 中国骨与关节杂志, 2022, 11(6): 454-460. |
[5] | Ghaben, A.L. and Scherer, P.E. (2019) Adipogenesis and Metabolic Health. Nature Reviews. Molecular Cell Biology, 20, 242-258. https://doi.org/10.1038/s41580-018-0093-z |
[6] | Sun, Y., Zhang, L., Cai, H. and Chen, Y. (2022) Editorial: Osteoporosis, Sarcopenia and Muscle-Bone Crosstalk in COPD. Frontiers in Physiology, 13, Article ID: 1040693. https://doi.org/10.3389/fphys.2022.1040693 |
[7] | Bosco, F., Musolino, V., Gliozzi, M., Nucera, S., Carresi, C., Zito, M.C., Scarano, F., Scicchitano, M., Reale, F., Ruga, S., Maiuolo, J., Macrì, R., Guarnieri, L., Coppoletta, A.R., Mollace, R., Muscoli, C., Palma, E. and Mollace, V. (2021) The Muscle to Bone Axis (and Viceversa): An Encrypted Language Affecting Tissues and Organs and Yet to Be Codified? Pharmaco-logical Research, 165, Article ID: 105427. https://doi.org/10.1016/j.phrs.2021.105427 |
[8] | Barros, D., Marques, E.A., Magalh?es, J. and Carvalho, J. (2022) Energy Metabolism and Frailty: The Potential Role of Exercise-Induced Myokines—A Narrative Review. Ageing Research Reviews, 82, Article ID: 101780.
https://doi.org/10.1016/j.arr.2022.101780 |
[9] | Bostr?m, E.A., Choi, J.H., Long, J.Z., Kajimura, S., Zingaretti, M.C., Vind, B.F., Tu, H., Cinti, S., H?jlund, K., Gygi, S.P. and Spiegelman, B.M. (2012) A PGC1-α-Dependent Myo-kine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. https://doi.org/10.1038/nature10777 |
[10] | Xue, Y., Hu, S., Chen, C., He, J., Sun, J., Jin, Y., Zhang, Y., Zhu, G., Shi, Q. and Rui, Y. (2022) Myokine Irisin Promotes Osteogenesis by Activating BMP/SMAD Signaling via αV Integrin and Regulates Bone Mass in Mice. International Journal of Biological Sciences, 18, 572-584. https://doi.org/10.7150/ijbs.63505 |
[11] | Ye, W., Wang, J., Lin, D. and Ding, Z. (2020) The Immunomodulatory Role of Irisin on Osteogenesis via AMPK- Mediated Macrophage Polarization. International Journal of Biological Mac-romolecules, 146, 25-35.
https://doi.org/10.1016/j.ijbiomac.2019.12.028 |
[12] | Chen, X., Sun, K., Zhao, S., Geng, T., Fan, X., Sun, S., Zheng, M. and Jin, Q. (2020) Irisin Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Activat-ing Autophagy via the Wnt//β-Catenin Signal Pathway. Cytokine, 136, Article ID: 155292. https://doi.org/10.1016/j.cyto.2020.155292 |
[13] | Zhu, J., Li, J., Yao, T., Li, T., Chang, B. and Yi, X. (2023) Analy-sis of the Role of Irisin Receptor Signaling in Regulating Osteogenic/Adipogenic Differentiation of Bone Marrow Mes-enchymal Stem Cells. Biotechnology & Genetic Engineering Reviews, 1-24. https://doi.org/10.1080/02648725.2023.2197713 |
[14] | Oranger, A., Zerlotin, R., Buccoliero, C., Sanesi, L., Storlino, G., Schipani, E., Kozloff, K.M., Mori, G., Colaianni, G., Colucci, S. and Grano, M. (2023) Irisin Modulates Inflamma-tory, Angiogenic, and Osteogenic Factors during Fracture Healing. International Journal of Molecular Sciences, 24, Ar-ticle No. 1809. https://doi.org/10.3390/ijms24031809 |
[15] | Zhang, Y., Xie, C., Wang, H., Foss, R.M., Clare, M., George, E.V., Li, S., Katz, A., Cheng, H., Ding, Y., Tang, D., Reeves, W.H. and Yang, L.J. (2016) Irisin Exerts Dual Effects on Browning and Adipogenesis of Human White Adipocytes. American Journal of Physiology. Endocrinology and Metabolism, 311, E530-E541.
https://doi.org/10.1152/ajpendo.00094.2016 |
[16] | Ma, E.B., Sahar, N.E., Jeong, M. and Huh, J.Y. (2019) Irisin Exerts Inhibitory Effect on Adipogenesis through Regulation of Wnt Signaling. Frontiers in Physiology, 10, Article No. 1085. https://doi.org/10.3389/fphys.2019.01085 |
[17] | Jorgensen, M.M. and de la Puente, P. (2022) Leukemia In-hibitory Factor: An Important Cytokine in Pathologies and Cancer. Biomolecules, 12, Article No. 217. https://doi.org/10.3390/biom12020217 |
[18] | Nicola, N.A. and Babon, J.J. (2015) Leukemia Inhibitory Factor (LIF). Cytokine & Growth Factor Reviews, 26, 533-544. https://doi.org/10.1016/j.cytogfr.2015.07.001 |
[19] | Liu, C. and Jiang, D. (2017) High Glucose-Induced LIF Suppresses Osteoblast Differentiation via Regulating STAT3/SOCS3 Sig-naling. Cytokine, 91, 132-139. https://doi.org/10.1016/j.cyto.2016.12.016 |
[20] | Du, J., Yang, J., He, Z., Cui, J., Yang, Y., Xu, M., Qu, X., Zhao, N., Yan, M., Li, H. and Yu, Z. (2020) Osteoblast and Osteoclast Activity Affect Bone Remodeling upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Frontiers in Molecular Biosciences, 7, Article ID: 585056.
https://doi.org/10.3389/fmolb.2020.585056 |
[21] | Udagawa, N., Koide, M., Nakamura, M., Nakamichi, Y., Yama-shita, T., Uehara, S., Kobayashi, Y., Furuya, Y., Yasuda, H., Fukuda, C. and Tsuda, E. (2021) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. https://doi.org/10.1007/s00774-020-01162-6 |
[22] | Kong, W., Tang, Y., Tang, K., Yan, Z., Liu, T., Tao, Q., Wang, J., Liu, J. and Yan, X. (2022) Leukemia Inhibitory Factor Is Dysregulated in Ankylosing Spondylitis and Contributes to Bone Formation. International Journal of Rheumatic Diseases, 25, 592-600. https://doi.org/10.1111/1756-185X.14312 |
[23] | Lee, S., Liu, P., Ahmad, M. and Tuckermann, J.P. (2021) Leukemia Inhibitory Factor Treatment Attenuates the Detrimental Effects of Glucocorticoids on Bone in Mice. Bone, 145, Article ID: 115843.
https://doi.org/10.1016/j.bone.2021.115843 |
[24] | Ikeda, S., Itoh, S., Yamamoto, Y., Yamauchi, Y., Matsushita, K., Naruse, H. and Hayashi, M. (2016) Developmental Stage-Dependent Effects of Leukemia Inhibitory Factor on Adipocyte Differentiation of Murine Bone Marrow Stromal Cells. Cell Biochemistry and Biophysics, 74, 11-17. https://doi.org/10.1007/s12013-015-0703-8 |
[25] | Aubert, J., Dessolin, S., Belmonte, N., Li, M., McKenzie, F.R., Staccini, L., Villageois, P., Barhanin, B., Vernallis, A., Smith, A.G., Ailhaud, G. and Dani, C. (1999) Leukemia Inhibi-tory Factor and Its Receptor Promote Adipocyte Differentiation via the Mitogen-Activated Protein Kinase Cascade. The Journal of Biological Chemistry, 274, 24965-24972.
https://doi.org/10.1074/jbc.274.35.24965 |
[26] | Wang, T., Yan, R., Xu, X., Yu, H., Wu, J., Yang, Y. and Li, W. (2019) Effects of Leukemia Inhibitory Factor Receptor on the Adipogenic Differentiation of Human Bone Marrow Mes-enchymal Stem Cells. Molecular Medicine Reports, 19, 4719-4726. https://doi.org/10.3892/mmr.2019.10140 |
[27] | Qiu, T., Crane, J.L., Xie, L., Xian, L., Xie, H. and Cao, X. (2018) IGF-I Induced Phosphorylation of PTH Receptor Enhances Osteoblast to Osteocyte Transition. Bone Research, 6, Article No. 5.
https://doi.org/10.1038/s41413-017-0002-7 |
[28] | Ran, G., Fang, W., Zhang, L., Peng, Y., Wu, A., Li, J., Ding, X., Zeng, S. and He, Y. (2021) Polypeptides IGF-1C and P24 Synergistically Promote Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Vitro through the p38 and JNK Signaling Pathways. The International Journal of Biochemistry & Cell Biology, 141, Article ID: 106091. https://doi.org/10.1016/j.biocel.2021.106091 |
[29] | Jiang, H.T., Ran, C.C., Liao, Y.P., Zhu, J.H., Wang, H., Deng, R., Nie, M., He, B.C. and Deng, Z.L. (2019) IGF-1 Reverses the Osteogenic Inhibitory Effect of Dexamethasone on BMP9-Induced Osteogenic Differentiation in Mouse Embryonic ?broblasts via PI3K/AKT/COX-2 Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 191, Article ID: 105363. https://doi.org/10.1016/j.jsbmb.2019.04.012 |
[30] | Feng, J. and Meng, Z. (2021) Insulin Growth Factor-1 Promotes the Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells through the Wnt/β-Catenin Pathway. Experimental and Therapeutic Medicine, 22, Article No. 891. https://doi.org/10.3892/etm.2021.10323 |
[31] | Wang, J.J., Xue, Q., Wang, Y.J., Zhang, M., Chen, Y.J. and Zhang, Q. (2022) Engineered Chimeric Peptides with IGF-1 and Titanium-Binding Functions to Enhance Osteogenic Differenti-ation in Vitro under T2DM Condition. Materials (Basel, Switzerland), 15, Article No. 3134. https://doi.org/10.3390/ma15093134 |
[32] | Zhou, X., Zhang, D., Wang, M., Zhang, D. and Xu, Y. (2019) Three-Dimensional Printed Titanium Scaffolds Enhance Osteogenic Differentiation and New Bone Formation by Cul-tured Adipose Tissue-Derived Stem Cells through the IGF-1R/AKT/Mammalian Target of Rapamycin Complex 1 (mTORC1) Pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 8043-8054. https://doi.org/10.12659/MSM.918517 |
[33] | Maridas, D.E., DeMambro, V.E., Le, P.T., Mohan, S. and Rosen, C.J. (2017) IGFBP4 Is Required for Adipogenesis and Influences the Distribution of Adipose Depots. En-docrinology, 158, 3488-3500.
https://doi.org/10.1210/en.2017-00248 |
[34] | Patel, V.S., Ete Chan, M., Rubin, J. and Rubin, C.T. (2018) Marrow Adiposity and Hematopoiesis in Aging and Obesity: Exercise as an Intervention. Current Osteoporosis Reports, 16, 105-115.
https://doi.org/10.1007/s11914-018-0424-1 |
[35] | Bredella, M.A., Torriani, M., Ghomi, R.H., Thomas, B.J., Brick, D.J., Gerweck, A.V., Rosen, C.J., Klibanski, A. and Miller, K.K. (2011) Vertebral Bone Marrow Fat Is Positively Asso-ciated with Visceral Fat and Inversely Associated with IGF-1 in Obese Women. Obesity (Silver Spring, Md.), 19, 49-53. https://doi.org/10.1038/oby.2010.106 |
[36] | Fritton, J.C., Kawashima, Y., Mejia, W., Courtland, H.W., Elis, S., Sun, H., Wu, Y., Rosen, C.J., Clemmons, D. and Yakar, S. (2010) The Insulin-Like Growth Factor-1 Binding Protein Ac-id-Labile Subunit Alters Mesenchymal Stromal Cell Fate. The Journal of Biological Chemistry, 285, 4709-4714. https://doi.org/10.1074/jbc.M109.041913 |
[37] | Wall, B.T., Dirks, M.L., Snijders, T., Senden, J.M., Dolmans, J. and van Loon, L.J. (2014) Substantial Skeletal Muscle Loss Occurs during Only 5 Days of Disuse. Acta Physiologica (Ox-ford, England), 210, 600-611.
https://doi.org/10.1111/apha.12190 |
[38] | Qin, Y., Peng, Y., Zhao, W., Pan, J., Ksiezak-Reding, H., Cardozo, C., Wu, Y., DivietiPajevic, P., Bonewald, L.F., Bauman, W.A. and Qin, W. (2017) Myostatin Inhibits Osteoblastic Differen-tiation by Suppressing Osteocyte-Derived Exosomal microRNA-218: A Novel Mechanism in Muscle-Bone Communica-tion. The Journal of Biological Chemistry, 292, 11021-11033. https://doi.org/10.1074/jbc.M116.770941 |
[39] | Suh, J., Kim, N.K., Lee, S.H., Eom, J.H., Lee, Y., Park, J.C., Woo, K.M., Baek, J.H., Kim, J.E., Ryoo, H.M., Lee, S.J. and Lee, Y.S. (2020) GDF11 Promotes Osteogenesis as Opposed to MSTN, and Follistatin, a MSTN/GDF11 Inhibitor, In-creases Muscle Mass but Weakens Bone. Proceedings of the National Academy of Sciences of the United States of Amer-ica, 117, 4910-4920. https://doi.org/10.1073/pnas.1916034117 |
[40] | Din, H.N., Strong, D., Singh-Carlson, S., Corliss, H.L., Hartman, S.J., Madanat, H. and Su, H.I. (2022) Association between Pregnancy Intention and Preconcep-tion Health Behaviors. Cancer, 128, 615-623.
https://doi.org/10.1002/cncr.33958 |
[41] | Guo, W., Flanagan, J., Jasuja, R., Kirkland, J., Jiang, L. and Bhasin, S. (2008) The Effects of Myostatin on Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Are Mediated through Cross-Communication between Smad3 and Wnt/beta-Catenin Signaling Pathways. The Journal of Biological Chemistry, 283, 9136-9145.
https://doi.org/10.1074/jbc.M708968200 |
[42] | Brenner, D., Blaser, H. and Mak, T.W. (2015) Regulation of Tumour Necrosis Factor Signalling: Live or Let Die. Nature Reviews. Immunology, 15, 362-374. https://doi.org/10.1038/nri3834 |
[43] | Liu, W., Wu, K. and Wu, W. (2022) Effect of MicroRNA-138 on Tumor Ne-crosis Factor-Alpha-Induced Suppression of Osteogenic Differentiation of Dental Pulp Stem Cells and Underlying Mechanism. BioMed Research International, 2022, Article ID: 7230167. https://doi.org/10.1155/2022/7230167 |
[44] | Du, D., Zhou, Z., Zhu, L., Hu, X., Lu, J., Shi, C., Chen, F. and Chen, A. (2018) TNF-α Suppresses Osteogenic Differentiation of MSCs by Accelerating P2Y2 Receptor in Estro-gen-Deficiency Induced Osteoporosis. Bone, 117, 161-170.
https://doi.org/10.1016/j.bone.2018.09.012 |
[45] | Li, X., Ren, G., Cai, C., Yang, X., Nie, L., Jing, X. and Li, C. (2020) TNF-α Regulates the Osteogenic Differentiation of Bone Morphogenetic Factor 9 Adenovirus-Transduced Rat Follicle Stem Cells via Wnt Signaling. Molecular Medicine Reports, 22, 3141-3150. https://doi.org/10.3892/mmr.2020.11439 |
[46] | Qi, Y.P., Luan, Y.J. and Wang, L.M. (2023) Low Concentrations of Tumor Necrosis Factor-Alpha Promote Human Periodontal Ligament Stem Cells Osteogenic Differentiation by Activa-tion of Autophagy via Inhibition of AKT/mTOR Pathway. Molecular Biology Reports, 50, 3329-3339. https://doi.org/10.1007/s11033-022-08173-8 |
[47] | Mo, Q., Zhang, W., Zhu, A., Backman, L.J. and Chen, J. (2022) Regulation of Osteogenic Differentiation by the Pro-Inflammatory Cytokines IL-1β and TNF-α: Current Conclusions and Controversies. Human Cell, 35, 957-971.
https://doi.org/10.1007/s13577-022-00711-7 |
[48] | Ma, H., Li, Y.N., Song, L., Liu, R., Li, X., Shang, Q., Wang, Y., Shao, C. and Shi, Y. (2020) Macrophages Inhibit Adipogenic Differentiation of Adipose Tissue Derived Mesenchymal Stem/Stromal Cells by Producing Pro-Inflammatory Cytokines. Cell & Bioscience, 10, Article No. 88. https://doi.org/10.1186/s13578-020-00450-y |
[49] | 占秀文, 杨磊, 郑美蓉, 等. 骨髓间充质干细胞成脂成骨平衡调控研究进展[J]. 解剖学报, 2019, 50(3): 400-404. |
[50] | 彭竑程, 李雨真, 华臻, 等. 绝经后女性骨折风险与肌源性因子及骨代谢指标的相关性研究[J]. 中国骨质疏松杂志, 2023, 29(9): 1249-1254. |
[51] | Hu, W., He, J., Fu, W., Wang, C., Yue, H., Gu, J., Zhang, H. and Zhang, Z. (2019) Fibroblast Growth Factor 21 Is Associated with Bone Min-eral Density, but Not with Bone Turnover Markers and Fractures in Chinese Postmenopausal Women. Journal of Clini-cal Densitometry: The Official Journal of the International Society for Clinical Densitometry, 22, 179-184. https://doi.org/10.1016/j.jocd.2018.08.005 |
[52] | Stamnitz, S., Krawczenko, A., Sza?aj, U., Górecka, ?., Antończyk, A., Kie?bowicz, Z., ?wi?szkowski, W., ?ojkowski, W. and Klimczak, A. (2022) Osteogenic Potential of Sheep Mesen-chymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold. Cells, 11, Article No. 3446.
https://doi.org/10.3390/cells11213446 |
[53] | Arroyo-Johnson, C. and Mincey, K.D. (2016) Obesity Epidemiology Worldwide. Gastroenterology Clinics of North America, 45, 571-579. https://doi.org/10.1016/j.gtc.2016.07.012 |
[54] | Mathis, D. (2013) Immunological Goings-On in Visceral Adipose Tissue. Cell Metabolism, 17, 851-859.
https://doi.org/10.1016/j.cmet.2013.05.008 |
[55] | Febbraio, M.A. and Pedersen, B.K. (2020) Who Would Have Thought—Myokines Two Decades on. Nature Reviews. Endocrinology, 16, 619-620. https://doi.org/10.1038/s41574-020-00408-7 |
[56] | Hittel, D.S., Berggren, J.R., Shearer, J., Boyle, K. and Houmard, J.A. (2009) Increased Secretion and Expression of Myostatin in Skeletal Muscle from Extremely Obese Women. Diabe-tes, 58, 30-38. https://doi.org/10.2337/db08-0943 |
[57] | Baczek, J., Silkiewicz, M. and Wojszel, Z.B. (2020) Myo-statin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients, 12, Ar-ticle No. 2401. https://doi.org/10.3390/nu12082401 |
[58] | Díaz, B.B., González, D.A., Gannar, F., Pérez, M.C.R. and de León, A.C. (2018) Myokines, Physical Activity, Insulin Resistance and Autoimmune Diseases. Immunology Let-ters, 203, 1-5. https://doi.org/10.1016/j.imlet.2018.09.002 |
[59] | Eckel, J. (2019) Myokines in Metabolic Homeosta-sis and Diabetes. Diabetologia, 62, 1523-1528.
https://doi.org/10.1007/s00125-019-4927-9 |