全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

维生素K对帕金森病的影响
Impact Factor of Vitamin K on Parkinson’s Disease

DOI: 10.12677/ACM.2023.13122650, PP. 18835-18841

Keywords: 帕金森病,氧化应激,铁死亡,维生素K,行为学,谷胱甘肽
Parkinson’s Disease
, Oxidative Stress, Iron Death, Vitamin K, Behavioral Science, Glutathione

Full-Text   Cite this paper   Add to My Lib

Abstract:

帕金森病(Parkinson’s disease, PD)是一种慢性神经系统疾病,主要影响患者的运动能力和协调自主能力。目前这些症状源于大脑中的黑质细胞变性死亡,导致神经递质多巴胺的减少。除此之外,铁沉积、氧化应激和脂质过氧化损伤在帕金森病中的致病作用也逐渐被认知。维生素K对苯二酚是维生素K的完全还原形式,可作为一种抗氧化剂,在防止细胞凋亡,氧化应激和小胶质细胞的激活、神经元细胞电子传递作用等方面都很有前途。但是对于维生素K对帕金森病的发病机制及治疗关系的研究非常有限,仍需通过大量临床实验及动物实验进一步研究。
Parkinson’s disease (PD) is a chronic neurological disorder that primarily affects movement and coordination. The current symptoms stem from the degeneration and death of cells in the substan-tia nigra in the brain, resulting in a decrease in the neurotransmitter dopamine. In addition, iron overload, elevated oxidative stress and lipid peroxidation damage are further significant features of Parkinson’s pathophysiology. Vitamin K (vitamin K hydroquinone, VKH2) is a completely reduced form of vitamin K, which acts as an antioxidant and is promising in preventing apoptosis, oxidative stress and activation of microglia, and electron transfer in neuronal cells. However, the research on the pathogenesis and treatment relationship of vitamin K to Parkinson’s disease is very limited, and it still needs to be further studied through a large number of clinical experiments and animal ex-periments.

References

[1]  Yang, W.Y., Hamilton, J.L., Kopil, C., Beck, J.C. and Tanner, C.M. (2020) Current and Projected Future Economic Burden of Parkinson’s Disease in the U.S. NPJ Parkinson’s Disease, 6, Article No. 15.
https://doi.org/10.1038/s41531-020-0117-1
[2]  Tysnes, O.B. and Storstein, A. (2017) Epidemiology of Parkin-son’s Disease. Journal of Neural Transmission (Vienna), 124, 901-905.
https://doi.org/10.1007/s00702-017-1686-y
[3]  Pajares, M., Rojo, A.I., et al. (2020) Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells, 9, Article No. 1687.
https://doi.org/10.3390/cells9071687
[4]  Balestrino, R. and Schapira, A.H.V. (2019) Parkinson Disease. Europe-an Journal of Neurology, 27, 27-42.
https://doi.org/10.1111/ene.14108
[5]  Trist, B.G., Hare, D.J. and Double, K.L. (2019) Oxidative Stress in the Aging Substantia Nigra and the Etiology of Parkinson’s Disease. Aging Cell, 18, e13031.
https://doi.org/10.1111/acel.13031
[6]  Angelova, P.R., Choi, M.L., Choi, M.L., Berezhnov, A.V. and Berezhnov, A.V. (2020) Alpha Synuclein Aggregation Drives Ferroptosis: An Interplay of Iron, Calcium and Lipid Peroxidation. Cell Death and Differentiation, 27, 2781-2796.
https://doi.org/10.1038/s41418-020-0542-z
[7]  Pe?a-Bautista, C., Vento, M., Baquero, M. and Cháfer-Pericás, C. (2019) Lipid Peroxidation in Neurodegeneration. Clinicachimica Acta, International Journal of Clinical Chemistry, 497, 178-188.
https://doi.org/10.1016/j.cca.2019.07.037
[8]  Bj?rklund, G., Peana, M., Maes, M., Dadar, M. and Severin, B. (2020) The Glutathione System in Parkinson’s Disease and Its Progression. Neuroscience & Biobehavioral Reviews, 120, 470-478.
https://doi.org/10.1016/j.neubiorev.2020.10.004
[9]  Wu, Q.P., Wang, L.F. and Zhao, R.Q. (2022) Neglected Vitamin K Deficiency Causing Coagulation Dysfunction in an Older Patient with Pneumonia: A Case Report. BMC Ger-iatrics, 22, Article No. 628.
https://doi.org/10.1186/s12877-022-03327-6
[10]  Luoqian, J.Y., Yang, W.Y., Ding, X.L., Tuo, Q.-Z. and Xiang, Z. (2022) Ferroptosis Promotes T-Cell Activation-Induced Neurodegeneration in Multiple Sclerosis. Cellular & Molecular Immunology, 19, 913-924.
https://doi.org/10.1038/s41423-022-00883-0
[11]  Emekli-Alturfan, E. and Alturfan, A. (2022) The Emerging Rela-tionship between Vitamin K and Neurodegenerative Diseases: A Review of Current Evidence. Molecular Biology Reports, 50, 815-828.
https://doi.org/10.1007/s11033-022-07925-w
[12]  Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I. and Conrad, M. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[13]  Ademowo, O.S., Dias, H.K.I., Burton, D.G.A. and Griffiths, H.R. (2017) Lipid (per) Oxidation in Mitochondria: An Emerging Target in the Ageing Process? Biogerontology, 18, 859-879.
https://doi.org/10.1007/s10522-017-9710-z
[14]  Yan, H.-F., Zou, T., Tuo, Q.-Z. and Xu, S. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49.
https://doi.org/10.1038/s41392-020-00428-9
[15]  Singh, A., Kukreti, R., Saso, L., et al. (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules (Basel, Switzerland), 24, Article No. 1583.
https://doi.org/10.3390/molecules24081583
[16]  Forcina, G.C. and Dixon, S.J. (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 19, e1800311.
https://doi.org/10.1002/pmic.201800311
[17]  Thapa, K., Khan, H., Kanojia, N., Singh, T.G. and Kaur, A. (2022) Therapeutic Insights on Ferroptosis in Parkinson’s Disease. European Journal of Pharmacology, 930, Article ID: 175133.
https://doi.org/10.1016/j.ejphar.2022.175133
[18]  Mahoney-Sánchez, L., Bouchaoui, H., Ayton, S., Devos, D. and Duce, J.A. (2020) Ferroptosis and Its Potential Role in the Physiopathology of Parkinson’s Disease. Progress in Neurobiology, 196, Article ID: 101890.
https://doi.org/10.1016/j.pneurobio.2020.101890
[19]  Dexter, D.T., Wells, F.R., Agid, F., Agid, Y. and Lees, A.J. (1987) Increased Nigral Iron Content in Postmortem Parkinsonian Brain. The Lancet (London, England), 2, 1219-1220.
https://doi.org/10.1016/S0140-6736(87)91361-4
[20]  Hirsch, E.C., Brel, J.P., Galle, P., Javoy-Agid, F. and Agid, Y. (1991) Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson’s Disease: An X-Ray Microa-nalysis. Journal of Neurochemistry, 56, 446-451.
https://doi.org/10.1111/j.1471-4159.1991.tb08170.x
[21]  de Farias, C.C., Maes, M., Bonifácio, K.L., Bortolasci, C.C. and de Souza Nogueira, A. (2016) Highly Specific Changes in Antioxidant Levels and Lipid Peroxidation in Par-kinson’s Disease and Its Progression: Disease and Staging Biomarkers and New Drug Targets. Neuroscience Letters, 617, 66-71.
https://doi.org/10.1016/j.neulet.2016.02.011
[22]  Sofic, E., Lange, K.W., Jellinger, K. and Riederer, P. (1992) Reduced and Oxidized Glutathione in the Substantia Nigra of Patients with Parkinson’s Disease. Neuroscience Letters, 142, 128-130.
https://doi.org/10.1016/0304-3940(92)90355-B
[23]  Dionísio, P.A., Amaral, J.D. and Rodrigues, C.M.P. (2021) Oxidative Stress and Regulated Cell Death in Parkinson’s Disease. Ageing Research Reviews, 67, Article ID: 101263.
https://doi.org/10.1016/j.arr.2021.101263
[24]  Battino, M., Littarru, G.P., Gorini, A. and Villa, R.F. (1996) Coen-zyme Q, Peroxidation and Cytochrome Oxidase Features after Parkinson’s-Like Disease by MPTP Toxicity in In-tra-Synaptic and Non-Synaptic Mitochondria from Macaca fascicularis Cerebral Cortex and Hippocampus: Action of Dihydroergocriptine. Neurochemical Research, 21, 1505-1514.
https://doi.org/10.1007/BF02533098
[25]  Bersuker, K., Hendricks, J.M., Li, Z.P., Magtanong, L. and Ford, B. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692.
https://doi.org/10.1038/s41586-019-1705-2
[26]  Guiney, S.J., Adlard, P.A., Bush, A.I., et al. (2021) Ferroptosis and Cell Death Mechanisms in Parkinson’s Disease. Neurochemistry Interna-tional, 104, 34-48.
https://doi.org/10.1016/j.neuint.2017.01.004
[27]  Ohsaki, Y., Shirakawa, H., Miura, A., Gi-riwono, P.E., Sato, S., et al. (2010) Vitamin K Suppresses the Lipopolysaccharide-Induced Expression of Inflammatory Cytokines in Cultured Macrophage-Like Cells via the Inhibition of the Activation of Nuclear Factor κB through the Re-pression of IKKα/β Phosphorylation. The Journal of Nutritional Biochemistry, 21, 1120-1126.
https://doi.org/10.1016/j.jnutbio.2009.09.011
[28]  De Oliveira, L.G., Angelo, Y.D.S., Iglesias, A.H. and Peron, J.P.S. (2021) Association of Serum Vitamin K2 Levels with Parkinson’s Disease: From Basic Case-Control Study to Big Data Mining Analysis. Aging, 12, 16410-16419.
https://doi.org/10.18632/aging.103691
[29]  Zhang, C., Liu, X.Y., Jin, S.D. and Chen, Y. (2022) Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Molecular Cancer, 21, Article No. 47.
https://doi.org/10.1186/s12943-022-01530-y
[30]  Ciulla, M., Marinelli, L., Cacciatore, I. and Stefano, A. (2019) Role of Dietary Supplements in the Management of Parkinson’s Disease. Biomolecules, 9, Article No. 271.
https://doi.org/10.3390/biom9070271
[31]  Merli, G.J. and Fink, J. (2008) Vitamin K and Thrombosis. Vitamins and Hormones, 78, 265-279.
https://doi.org/10.1016/S0083-6729(07)00013-1
[32]  Sandeep, Sahu, M.R., Rani, L., Kharat, A.S. and Mondal, A.C. (2023) Could Vitamins Have a Positive Impact on the Treatment of Parkinson’s Disease? Brain Sciences, 13, Arti-cle No. 272.
https://doi.org/10.3390/brainsci13020272
[33]  郁晓丹, 虞燕霞, 沈明强. 帕金森病患者血清中维生素K2及其他相关炎症指标变化和危险因素分析[J]. 中国老年学杂志, 2023, 43(5): 1110-1113.
[34]  Mishima, E., Mishima, E., Ito, J., Wu, Z.J. and Nakamura, T. (2022) A Non-Canonical Vitamin K Cycle Is a Potent Ferroptosis Sup-pressor. Nature, 608, 778-783.
https://doi.org/10.1038/s41586-022-05022-3
[35]  Dowd, P., Ham, S.W., Naga-nathan, S. and Hershline, R. (1995) The Mechanism of Action of Vitamin K. Annual Review of Nutrition, 15, 419-440.
https://doi.org/10.1146/annurev.nu.15.070195.002223
[36]  Sandeep, et al. (2023) Could Vitamins Have a Positive Impact on the Treatment of Parkinson’s Disease? Brain Sciences, 13, Article No. 272.
https://doi.org/10.3390/brainsci13020272
[37]  Lasemi, R., Kundi, M., Moghadam, N.B., Moghadam, N.B. and Moshammer, H. (2018) Vitamin K2 in Multiple Sclerosis Patients. Wiener Klinische Wochenschrift, 130, 307-313.
https://doi.org/10.1007/s00508-018-1328-x
[38]  Booth, S.L., Shea, M.K., Barger, K. and Leurgans, S.E. (2022) Association of Vitamin K with Cognitive Decline and Neuropathology in Community-Dwelling Older Persons. Alz-heimer’s & Dementia (New York, N.Y.), 8, e12255.
https://doi.org/10.1002/trc2.12255
[39]  Popescu, A. and German, M. (2021) Vitamin K2 Holds Promise for Alz-heimer’s Prevention and Treatment. Nutrients, 13, Article No. 2206.
https://doi.org/10.3390/nu13072206
[40]  Vos, M., Esposito, G., Edirisinghe, J.N., Vilain, S. and Haddad, D.M. (2012) Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency. Science (New York, N.Y.), 336, 1306-1310.
https://doi.org/10.1126/science.1218632
[41]  Prasuhn, J., Kasten, M., Vos, M., et al. (2021) The Use of Vitamin K2 in Patients with Parkinson’s Disease and Mitochondrial Dysfunction (PD-K2): A Theranostic Pilot Study in a Place-bo-Controlled Parallel Group Design. Frontiers in Neurology, 11, Article ID: 592104.
https://doi.org/10.3389/fneur.2020.592104
[42]  Yu, Y.-X., Yu, X.-D., Cheng, Q.-Z., Tang, L. and Shen, M.-Q. (2020) The Association of Serum Vitamin K2 Levels with Parkinson’s Disease: From Basic Case-Control Study to Big Data Mining Analysis. Aging, 12, 16410-16419.
https://doi.org/10.18632/aging.103691
[43]  Piccinini, M., Scandroglio, F., Prioni, S., Buccinnà, B., Loberto, N., Aureli, M., Chigorno, V., Lupino, E., DeMarco, G., Lomartire, A., et al. (2010) Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders. Molecular Neurobiology, 41, 314-340.
https://doi.org/10.1007/s12035-009-8096-6
[44]  Olsen, A.S.B. and F?rgeman, N.J. (2017) Sphingolipids: Mem-brane Microdomains in Brain Development, Function and Neurological Diseases. Open Biology, 7, Article ID: 170069.
https://doi.org/10.1098/rsob.170069
[45]  Cores, á., Carmona-Zafra, N., Clerigué, J., Villacampa, M. and Menéndez, J.C. (2023) Quinones as Neuroprotective Agents. Antioxidants (Basel, Switzerland), 12, Article No. 1464.
https://doi.org/10.3390/antiox12071464
[46]  Rocha, E.M., De Miranda, B. and Sanders, L.H. (2017) Al-pha-Synuclein: Pathology, Mitochondrial Dysfunction and Neuroinflammation in Parkinson’s Disease. Neurobiology of Disease, 109, 249-257.
https://doi.org/10.1016/j.nbd.2017.04.004
[47]  da Silva, F.L., Coelho Cerqueira, E., de Freitas, M.S., Gon?alves, D.L. and Costa, L.T. (2012) Vitamins K Interact with N-Terminus α-Synuclein and Modulate the Protein Fibrillization in Vitro. Exploring the Interaction between Quinones and α-Synuclein. Neurochemistry International, 62, 103-112.
https://doi.org/10.1016/j.neuint.2012.10.001
[48]  Ferland, G. (2012) Vitamin K, an Emerging Nutrient in Brain Function. Biofactors, 38, 151-157.
https://doi.org/10.1002/biof.1004
[49]  Gao, F., Chen, D., Hu, Q. and Wang, G. (2013) Rotenone Directly Induces BV2 Cell Activation via the p38 MAPK Pathway. PLOS ONE, 8, e72046.
https://doi.org/10.1371/journal.pone.0072046

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133