全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于一类单叶函数Schwarz导数的注记
A Note on the Schwarz Derivative of a Class of Univalent Functions

DOI: 10.12677/PM.2023.1312349, PP. 3365-3370

Keywords: 单叶函数,Schwarz导数,Grunsky算子
Univalent Functions
, Schwarz Derivative, Grunsky Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Hilbert空间上的一个有界算子和单叶函数的性质,讨论一类单叶函数的Schwarz导数,并引入一类Grunsky系数。得到有界算子的内积与一类单叶函数Schwarz导数的关系,以及其Schwarz导数在复Hilbert空间下的范数与Grunsky系数的关系。
By using a bounded operator on a Hilbert space and the properties of univalent functions, the Schwarz derivative of a class of univalent functions is discussed and a class of Grunsky coefficients is introduced. The relation between the inner product of a bounded operator and the Schwarz de-rivative of a class of univalent functions is obtained, as well as the relation between the norm of its Schwarz derivative in complex Hilbert space and the Grunsky coefficients.

References

[1]  Koebe, P. (1907) Ueber die Uniformisierung beliebiger analytischer Kurven. Nachrichten von der Gesellschaft der Wissenschaften zuG?ttingen. Mathematisch-Physikalische Klasse, 1907, 191-210.
http://eudml.org/doc/58678
[2]  Gronwall, T.H. (1914/1915) Some Remarks on Conformal Representation. Annals of Mathematics, 16, 72-76.
https://doi.org/10.2307/1968044
[3]  Grunsky, H. (1939) Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Mathematische Zeitschrift, 45, 29-61.
https://doi.org/10.1007/BF01580272
[4]  Sergeev, A. (2014) Lectures on Universal Teichmüller Space. Zürich: European Mathematical Society.
https://doi.org/10.4171/141
[5]  Todorov, P.G. (1979) New Explicit Formulas for the Coefficients of P-Symmetric Functions. Proceedings of the American Mathematical Society, 77, 81-86.
https://doi.org/10.1090/S0002-9939-1979-0539635-3
[6]  Hummel, J.A. (1964) The Grunsky Coefficients of a Schlicht Functions. Proceedings of the American Mathematical Society, 15, 142-150.
https://doi.org/10.1090/S0002-9939-1964-0158060-X
[7]  Harmelin, R. (1982) Bergman Kernel Function and Univalence Criteria. Journal d’Analyse Mathématique, 41, 249-258.
https://doi.org/10.1007/BF02803404
[8]  Aharonov, D. (1969) A Necessary and Sufficient Condition for Univalence of a Meromorphic Function. Duke Mathematical Journal, 36, 599-604.
https://doi.org/10.1215/S0012-7094-69-03671-0
[9]  Shen, Y. (2007) On Grunsky Operator. Science in China Series A: Mathematics, 50, 1805-1817.
https://doi.org/10.1007/s11425-007-0141-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133