All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Glycyrrhizic Acid-Loaded Poly-ɛ-Caprolactone Nanoparticles Decrease PRRSV Infection in MARC-145 Cells

DOI: 10.4236/ojvm.2023.1312018, PP. 221-236

Keywords: Cytotoxicity, Glycyrrhizic Acid, Cell Morphology, Polymeric Nanoparticles, PRRS Virus

Full-Text   Cite this paper   Add to My Lib

Abstract:

Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease with worldwide distribution caused by Betaarterivirus suid (PRRSV). The virion has great genetic and antigenic variability with a marked increase in virulence. Vaccines tested to date have been of little use in controlling the problems caused by PRRSV, so the present study was conceived to evaluate the antiviral effect of polymeric nanoparticles (PNPs) made with glycyrrhizic acid (GA). Recent work has proven that this nanoparticle system is stable. These nanoparticles have good GA carrying capacity, a size < 250 nm, a spherical morphology, and a wide safety range. The integrity of cell morphology can be maintained for up to 72 h. The antiviral effect of this nanoparticle system was tested in cultures of MARC-145 cells in pre- and coinfection assays with PRRSV to evaluate changes in cell morphology and effects on cell viability. The use of PNPsGA with the real-time quantitative polymerase chain reaction (RT-qPCR) decreased viral infection by 38% in 3 amplification cycles. These results suggest that this system has an antiviral effect against PRRSV under the study conditions established.

References

[1]  Zimmerman, J., Benfield, D.A., Murtaugh, M.P., Osorio, F., Stevenson, G.W. and Torremorell, M. (2006) Porcine Reproductive and Respiratory Syndrome Virus (Porcine Arterivirus). Diseases of Swine, 9, 387-418.
[2]  Lunney, J.K., Benfield, D.A. and Rowland, R.R. (2010) Porcine Reproductive and Respiratory Syndrome Virus: An Update on an Emerging and Re-Emerging Viral Disease of Swine. Virus Research, 154, 1-6.
https://doi.org/10.1016/j.virusres.2010.10.009
[3]  Dénes, L., Horváth, D.G., Duran, O., Ratkhjen, P.H., Kraft, C., Acs, B., Szász, A.M., Rümenapf, T., Papp, M., Ladinig, A. and Balka, G. (2021) In situ Hybridization of PRRSV-1 Combined with Digital Image Analysis in Lung Tissues of Pigs Challenged with PRRSV-1. Veterinary Sciences, 8, Article 235.
https://doi.org/10.3390/vetsci8100235
[4]  Lyoo, K.S., Yeom, M., Choi, J.Y., Park, J.H., Yoon, S.W. and Song, D. (2015) Unusual Severe Cases of Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection in Conventionally Reared Pigs in South Korea. BMC Veterinary Research, 11, Article No. 272.
https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-015-0584-5
https://doi.org/10.1186/s12917-015-0584-5
[5]  Huang, Y.W. and Meng, X.J. (2010) Novel Strategies and Approaches to Develop the Next Generation of Vaccines against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Virus Research, 154, 141-149.
https://doi.org/10.1016/j.virusres.2010.07.020
[6]  Irache, J.M. (2008) Nanomedicina: Nanopartículas con aplicaciones médicas. Anales del Sistema Sanitario de Navarra, 31, 7-10.
https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272008000100001
https://doi.org/10.4321/S1137-66272008000100001
[7]  Jabr-Milane, L., Van Vlerken, L., Devalapally, H., Shenoy, D., Komareddy, S., Bhavsar, M. and Amiji, M. (2008) Multi-Functional Nanocarriers for Targeted Delivery of Drugs and Genes. Journal of Controlled Release, 130, 121-128.
https://doi.org/10.1016/j.jconrel.2008.04.016
[8]  Tsuji, J.S., Maynard, A.D., Howard, P.C., James, J.T., Lam, C.W., Warheit, D.B. and Santamaria, A.B. (2006) Research Strategies for Safety Evaluation of Nanomaterials, Part IV: Risk Assessment of Nanoparticles. Toxicological Sciences, 89, 42-50.
https://doi.org/10.1093/toxsci/kfi339
[9]  Escalona, R.O. and Quintanar, G.D. (2014) Nanogeles poliméricos: Una nueva alternativa para la administración de fármacos. Revista mexicana de ciencias farmacéuticas, 45, 17-38.
https://www.redalyc.org/articulo.oa?id=57935447003
[10]  Urbán, M.Z. (2015) Evaluación de la actividad terapéutica del ácido glicirricínico formulado en sistemas submicrónicos contra el virus de PRRS. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City.
https://repositorio.unam.mx/contenidos/evaluacion-de-la-actividad-terapeutica-del-acido-glicirricinico-formulado-en-sistemas-submicronicos-contra-el-viru-78492?c=4A07aE&d=true&q=*:*&i=4&v=1&t=search_0&as=0
[11]  Aguilar, R.I., Alcalá, A.S., Llera, R.V. and Ganem, R.A. (2015) Preparation and Characterization of Mucoadhesive Nanoparticles of Poly (Methyl Vinyl Ether-Co-Maleic Anhydride) Containing Glycyrrhizic Acid Intended for Vaginal Administration. Drug Development and Industrial Pharmacy, 41, 1632-1639.
https://doi.org/10.3109/03639045.2014.980425
[12]  Izutani, Y., Kanaori, K. and Oda, M. (2014) Aggregation Property of Glycyrrhizic Acid and Its Interaction with Cyclodextrins Analyzed by Dynamic Light Scattering, Isothermal Titration Calorimetry, and NMR. Carbohydrate Research, 392, 25-30.
https://doi.org/10.1016/j.carres.2014.04.017
[13]  Jardon, X.S. (2020) Estudio del efecto biológico en líneas celulares de nanopartículas lipídicas y poliméricas como vehículo de ácido glicirricínico para el tratamiento del virus de PRRS. Master’s Thesis, Universidad Nacional Autónoma de México, México City.
http://132.248.9.195/ptd2020/enero/0799986/Index.html
[14]  Mosmann, T. (1983) Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal of Immunological Methods, 65, 55-63.
https://doi.org/10.1016/0022-1759(83)90303-4
[15]  Jardon-Xicotencatl, S., García-Tovar, C.G., Quintanar-Guerrero, D., Nieto-Bordes, J.L. and Juárez-Mosqueda, M.L. (2018) Effect of Two Glycyrrhizinic Acid Nanoparticle Carriers on MARC-145 Cells Actin Filaments. Applied Nanoscience, 8, 1111-1121.
https://doi.org/10.1007/s13204-018-0758-0
[16]  Baltina, L.A., Kondratenko, R.M., Plyasunova, O.A., Pokrovskii, A.G. and Tolstikov, G.A. (2009) Prospects for the Creation of New Antiviral Drugs Based on Glycyrrhizic Acid and Its Derivatives (A Review). Pharmaceutical Chemistry Journal, 43, 539-548.
https://doi.org/10.1007/s11094-010-0348-2
[17]  Baltina, L.A., Kondratenko, R.M., Baschenko, N.Z. and Pl’yasunova, O.A. (2015) Synthesis and Biological Activity of New Glycyrrhizic Acid Conjugates with Amino Acids and Dipeptides. Russian Journal of Bioorganic Chemistry, 35, 510-517.
https://doi.org/10.1134/S1068162009040141
[18]  Harada, S. (2005) The Broad Anti-Viral Agent Glycyrrhizin Directly Modulates the Fluidity of Plasma Membrane and HIV-1 Envelope. Biochemical Journal, 392, 191-199.
https://doi.org/10.1042/BJ20051069
[19]  Cáceres, S.O., Fragoso, R.R., Mena, C.C., et al. (2015) Hiperplasia Multiepitelial Focal: Tratamiento Comparativo, ácido Glicirricínico Contra Nitrógeno Líquido. Revista Odontológica Mexican, 19, 101-105.
https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-199X2015000200006
https://doi.org/10.1016/j.rodmex.2015.05.007
[20]  Pompei, R., Flore, O., Marccialis, M.A., Pani, A. and Loddo, B. (1979) Glycyrrhizic Acid Inhibits Virus Growth and Inactivates Virus Particles. Nature, 281, 689-690.
https://doi.org/10.1038/281689a0
[21]  Pompei, R., Paghi, L., Ingianni, A. and Uccheddu, P. (1983) Glycyrrhizic Acid Inhibits Influenza Virus Growth in Embryonated Eggs. Microbiologica, 6, 247-250.
https://pubmed.ncbi.nlm.nih.gov/6633273/
[22]  Pompei, R., Pani, A., Flore, O., Marcialis, M.A. and Loddo, B. (1980) Antiviral Activity of Glycyrrhizic Acid. Cellular and Molecular Life Sciences, 36, 304.
https://doi.org/10.1007/BF01952290
[23]  Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H. and Doerr, H.W. (2003) Glycyrrhizin, an Active Component of Liquorice Roots, and Replication of SARS-Associated Coronavirus. The Lancet, 361, 2045-2046.
https://doi.org/10.1016/S0140-6736(03)13615-X
[24]  Wong, G., Lu, J., Zhang, W. and Gao, G.F. (2019) Pseudorabies Virus: A Neglected Zoonotic Pathogen in Humans? Emerging Microbes & Infections, 8, 150-154.
https://doi.org/10.1080/22221751.2018.1563459
[25]  Lee, C. (2015) Porcine Epidemic Diarrhea Virus: An Emerging and Re-Emerging Epizootic Swine Virus. Virology Journal, 12, Article No. 193.
https://doi.org/10.1186/s12985-015-0421-2
[26]  Størmer, F.C., Reistad, R. and Alexander, J. (1993) Glycyrrhizic Acid in Liquorice—Evaluation of Health Hazard. Food and Chemical Toxicology, 31, 303-312.
https://doi.org/10.1016/0278-6915(93)90080-I
[27]  Escalona, R.O. (2017) Desarrollo y caracterización de nanopartículas con superficie modificada como potenciales transportadores de fármacos a través de la barrera hematoencefálica. Tesis Maestría, Programa de Maestría y Doctorado en Ciencias Químicas. Universidad Nacional Autónoma de México.
https://repositorio.unam.mx/contenidos/desarrollo-y-caracterizacion-de-nanoparticulas-con-superficie-modificada-como-potenciales-transportadores-de-far-293362?c=B7Zq0A&d=false&q=*:*&i=1&v=1&t=search_0&as=0
[28]  Garzón, M.L., Hernández, A., Vázquez, M.L., Villafuerte, L. and García, B. (2008) Preparación de nanopartículas sólidas lipídicas (SLN), y de Acarreadores lipídicos nanoestructurados (NLC). Revista Mexicana de Ciencias Farmacéuticas, 39, 50-66.
https://www.redalyc.org/articulo.oa?id=57911113008
[29]  Quintanar, G.D., Tamayo, E.D., Ganem, Q.A., Allémann, E. and Doelker, E. (2005) Adaptation and Optimization of the Emulsification-Diffusion Technique to Prepare Lipidic Nanospheres. European Journal of Pharmaceutical Sciences, 26, 211-218.
https://doi.org/10.1016/j.ejps.2005.06.001
[30]  Albina, E. (1997) Epidemiology of Porcine Reproductive and Respiratory Syndrome (PRRS): An Overview. Veterinary Microbiology, 55, 309-316.
https://doi.org/10.1016/S0378-1135(96)01322-3
[31]  Tian, K., Yu, X., Zhao, T., Feng, Y., Cao, Z., Wang, C. and Liu, D. (2007) Emergence of Fatal PRRSV Variants: Unparalleled Outbreaks of Atypical PRRS in China and Molecular Dissection of the Unique Hallmark. PLOS ONE, 2, e526.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885284/
https://doi.org/10.1371/journal.pone.0000526
[32]  Dea, S., Gagnon, C.A., Mardassi, H., Pirzadeh, B. and Rogan, D. (2000) Current Knowledge on the Structural Proteins of Porcine Reproductive and Respiratory Syndrome (PRRS) Virus: Comparison of the North American and European Isolates. Archives of Virology, 145, 659-688.
https://doi.org/10.1007/s007050050662
[33]  Kim, H.S., Kwang, J., Yoon, I.J., Joo, H.S. and Frey, M.L. (1993) Enhanced Replication of Porcine Reproductive and Respiratory Syndrome (PRRS) Virus in a Homogeneous Subpopulation of MA-104 Cell Line. Archives of Virology, 133, 477-483.
https://doi.org/10.1007/BF01313785
[34]  Dea, S., Sawyer, N., Alain, R. and Athanassious, R. (1995) Ultrastructural Characteristics and Morphogenesis of Porcine Reproductive and Respiratory Syndrome Virus Propagated in the Highly Permissive MARC-145 Cell Clone. In: Talbot, P.J. and Levy, G.A., Eds., Corona- and Related Viruses, Springer, Boston, 95-98.
https://doi.org/10.1007/978-1-4615-1899-0_13
[35]  Flores-Mendoza, L., Silva-Campa, E., Reséndiz, M., Mata-Haro, V., Osorio, F.A. and Hernández, J. (2009) Efecto del virus del síndrome reproductivo y respiratorio porcino (PRRS) en células dendríticas de cerdo derivadas de monocitos. Veterinaria México, 40, 39-54.
https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0301-50922009000100005
[36]  Du, Y., Yoo, D., Paradis, M.A. and Scherba, G. (2011) Antiviral Activity of Tilmicosin for Type 1 and Type 2 Porcine Reproductive and Respiratory Syndrome Virus in Cultured Porcine Alveolar Macrophages. Journal of Antivirals & Antiretrovirals, 3, 28-33.
https://www.longdom.org/open-access/antiviral-activity-of-tilmicosin-for-type-1-and-type-2-porcine-reproductive-and-respiratory-syndrome-virus-in-cultured-p-5857.html
https://doi.org/10.4172/jaa.1000031
[37]  Zhang, S., Zhou, Y., Jiang, Y., Li, G., Yan, L., Yu, H. and Tong, G. (2011) Generation of an Infectious Clone of HuN4-F112, an Attenuated Live Vaccine Strain of Porcine Reproductive and Respiratory Syndrome Virus. Virology Journal, 8, Article No. 410.
https://doi.org/10.1186/1743-422X-8-410
[38]  Howerth, E.W., Murphy, M.D. and Roberts, A.W. (2002) Failure of Porcine Reproductive and Respiratory Syndrome Virus to Replicate in Porcine Endothelial Cell Cultures. Journal of Veterinary Diagnostic Investigation, 14, 73-76.
https://doi.org/10.1177/104063870201400117
[39]  Zhang, O. and Yoo, D. (2015) PRRS Virus Receptors and Their Role for Pathogenesis. Veterinary Microbiology, 177, 229-241.
https://doi.org/10.1016/j.vetmic.2015.04.002
[40]  Duan, E., Wang, D., Fang, L., Ma, J., Luo, J., Chen, H. and Xiao, S. (2015) Suppression of Porcine Reproductive and Respiratory Syndrome Virus Proliferation by Glycyrrhizin. Antiviral Research, 120, 122-125.
https://doi.org/10.1016/j.antiviral.2015.06.001
[41]  Tong, T., Hu, H., Zhou, J., Deng, S., Zhang, X., Tang, W. and Liang, J. (2020) Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms. Small, 16, Article ID: 1906206.
https://doi.org/10.1002/smll.201906206
[42]  Zhang, Q. and Ye, M. (2009) Chemical Analysis of the Chinese Herbal Medicine Gan-Cao (Licorice). Journal of Chromatography A, 1216, 1954-1969.
https://doi.org/10.1016/j.chroma.2008.07.072

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413