全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

风力机叶片后缘厚度改型研究
Study on Modification of the Trailing Edge Thickness of Wind Turbine Blade

DOI: 10.12677/JAST.2023.114014, PP. 111-116

Keywords: 风力机叶片,翼型,后缘改型,Rfoil
Wind Turbine Blade
, Airfoil, Trailing Edge Modification, Rfoil

Full-Text   Cite this paper   Add to My Lib

Abstract:

为满足风力机叶片性能、结构及工艺的需求,叶片后缘厚度要进行改型。本文采用Rfoil软件计算后缘改型前后的DU93-W-210翼型气动性能,研究分析了后缘改型从吸力面向压力面偏移以及改型位置从前缘向后缘偏移对翼型气动特性的影响。不同的后缘厚度改型方法对翼型气动性能的影响不同。研究结果表明,对于期望得到较好的升力系数的改型方法,以偏向压力面和改型位置靠近最大厚度为佳;而对于增强叶尖的工艺性且气动性能的改变尽量小的改型方法,则以对称增厚为宜;此外,后缘厚度改型后的升力系数和升力系数线性段斜率呈负相关关系。
Due to the requirements of performance, structure and technology, the thickness of the trailing edge of wind turbine blade airfoil should be modified. In this paper, the aerodynamic performance of the DU93-W-210 airfoil before and after the trailing edge modification was calculated using Rfoil software. The effects of the trailing edge modification shifting from suction to pressure surface and the modification position shifting from the leading edge to the trailing edge on the aerodynamic characteristics of the airfoil were studied and analyzed. Different trailing edge thickness modification methods have different effects on the aerodynamic performance of the airfoil. The results show that, for the modification method that expects to get a better lift coefficient, it is better to lean towards the pressure surface and near the maximum thickness; for the modification method that enhances the blade tip technology and the change of aerodynamic performance as little as possible, symmetrical thickening is appropriate. In addition, there is a negative correlation between the lift coefficient and the slope of the linear section of the lift coefficient curve after the trailing edge thickness modification.

References

[1]  Chow, R. and van Dam, C.R. (2013) Computational Investigations of Blunt Trailing-Edge and Twist Modifications to the Inboard Region of the NREL 5 MW Rotor. Wind Energy, 16, 445-458.
https://doi.org/10.1002/we.1505
[2]  何科杉, 陈严, 漆良文, 等. 风力机尾缘襟翼气动特性及减振性能研究[J]. 振动与冲击, 2021, 40(15): 198-206.
https://doi.org/10.13465/j.cnki.jvs.2021.15.025
[3]  马铁强, 陈明, 孙传宗. 风力机叶片翼型钝尾缘改型新方法及气动性能分析研究[J]. 可再生能源, 2020, 38(12): 1610-1614.
[4]  Chao, D.D. and van Dam, C.P. (2007) Computational Aerodynamic Analysis of a Blunt Trailing-Edge Airfoil Modification to the NREL Phase VI Rotor. Wind Energy, 10, 529-550.
https://doi.org/10.1002/we.239
[5]  刘爱瑜. 大型风力机钝尾缘叶片结构与气动性能研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2019.
[6]  牛牧华, 陈程, 李倩. 风力机叶片尾缘几何与结构构型对尾缘胶接剪切疲劳性能的影响研究[J]. 可再生能源, 2022, 40(5): 645-650.
[7]  郑玉巧, 马辉东, 魏剑峰, 等. 复合材料风力机叶片尾缘结构优化设计[J]. 现代制造工程, 2019(8): 56-61.
https://doi.org/10.16731/j.cnki.1671-3133.2019.08.009
[8]  Timmer, W.A. and van Rooij, R.P.J.O.M. (2003) Summary of the Delft University Wind Turbine Dedicated Airfoils. Journal of Solar Energy Engineering, 125, 488-496.
https://doi.org/10.1115/1.1626129
[9]  林邓添. 新型风力机专用翼型的试验研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2010.
[10]  张磊, 杨科, 赵晓路, 等. 不同尾缘改型方式对风力机钝尾缘翼型气动性能的影响[J]. 工程热物理学报, 2009, 30(5): 773-776.
[11]  李磊, 王旭玲. 风电机组叶片钝尾缘翼型改型方式的研究[J]. 风能, 2015(6): 86-88.
[12]  邓磊, 乔志德, 杨旭东, 等. 基于RANS方程大型风力机翼型钝尾缘修型气动性能计算[J]. 太阳能学报, 2012, 33(4): 545-551.
[13]  Baker, J.P., Mayda, E.A. and van Dam, C.P. (2006) Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils. Journal of Solar Energy Engineering, 128, 422-431.
https://doi.org/10.1115/1.2346701
[14]  Stock, H.W. and Haase, W. (2000) Navier-Stokes Airfoil Computations with eN Transition Prediction Including Transitional Flow Regions. AIAA Journal, 38, 2059-2066.
https://doi.org/10.2514/2.893
[15]  Standish, K.J. and van Dam, C.P. (2003) Aerodynamic Anal-ysis of Blunt Trailing Edge Airfoils. Journal of Solar Energy Engineering, 125, 479-487.
https://doi.org/10.1115/1.1629103

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133