|
钠电池金属钠阳极的发展现状及其未来展望
|
Abstract:
钠离子电池在资源丰富度和价格方面具有明显的优点,因此它比锂离子电池更能满足人类活动对能源的巨大需求。阳极作为电池的一个重要组成部分,在过去的几十年的科研探索中,钠金属阳极凭借其高理论容量和低氧化还原电位成功脱颖而出。然而,由于循环过程中钠枝晶的不可控生长,引起了电池性能的严重损失(即无限体积变化,不稳定的固体电解质界面,以及安全问题),由此拉大了钠金属阳极的直接使用与其大规模应用之间的差距。虽然现阶段对高性能金属钠阳极的综述研究在不断深入,但解决上述挑战的新研究仍在进行中。因此,我们在此从四个方面(保护层、电解质添加剂、三维框架集流器、合金材料)对高能金属钠阳极的最新进展进行总结,并从这个角度进行详细的讨论和分析。此外,还对构建高性能金属钠阳极的潜在研究方向和前景进行了展望。
Sodium-ion battery has obvious preponderance in resource abundance and price, thus it can fulfill the huge demand of human activities for energy, compared to the lithium ion battery. As a part of batteries, sodium metal anode plays a significant role in the battery, which stood out from various materials by virtue of its high theoretical capacity and low redox potential in the past decades of scientific research and exploration. Unfortunately, as the uncontrollable growth of sodium dendrites keeps happening during the cycle test, it caused the serious losses in battery performance (i.e. infinite volume changes, unstable solid electrolyte interfaces, and safety issues), which further widened the gap between the direct use of sodium metal anodes and their large-scale applications. Although the current review of high-performance metal sodium anodes is constantly deepening, new research to address the aforementioned challenges is still ongoing. Therefore, we summarize the latest progress of high-energy metal sodium anodes from four aspects (protective layer, electrolyte additives, three-dimensional framework current collector, alloy materials), and conduct a detailed discussion and analysis from this perspective. In addition, potential research directions and prospects for constructing high-performance metal sodium anodes were also discussed.
[1] | Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P. and Liu, J. (2011) Electrochemical Energy Storage for Green Grid. Chemical Reviews, 111, 3577-3613. https://doi.org/10.1021/cr100290v |
[2] | Kang, H., Liu, Y., Cao, K., Zhao, Y., Jiao, L., Wang, Y. and Yuan, H. (2015) Update on Anode Materials for Na-Ion Batteries. Journal of Materials Chemistry A, 3, 17899-17913. https://doi.org/10.1039/C5TA03181H |
[3] | Larcher, D. and Tarascon, J.M. (2015) Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nature Chemistry, 7, 19-29. https://doi.org/10.1038/nchem.2085 |
[4] | Zhu, Z., Zhong, W., Zhang, Y., Dong, P., Sun, S., Zhang, Y. and Li, X. (2021) Elucidating Electrochemical Intercalation Mechanisms of Biomass-Derived Hard Carbon in Sodium-/Potassium-Ion Batteries. Carbon Energy, 3, 541-553.
https://doi.org/10.1002/cey2.111 |
[5] | Zhao, Q., Chen, X., Hou, W., Ye, B., Zhang, Y., Xia, X. and Wang, J. (2022) A Facile, Scalable, High Stability Lithium Metal Anode. SusMat, 2, 104-112. https://doi.org/10.1002/sus2.43 |
[6] | Zhang, L.L., Wei, C., Fu, X.Y., Chen, Z.Y., Yan, B., Sun, P.P., Chang, K.J. and Yang, X.L. (2021) Ternary Ni-Based Prussian Blue Analogue with Superior Sodium Storage Performance Induced by Synergistic Effect of Co and Fe. Carbon Energy, 3, 827-839. https://doi.org/10.1002/cey2.142 |
[7] | Shen, S., Zhou, R., Li, Y., Liu, B., Pan, G., Liu, Q., Xiong, Q., Wang, X., Xia, X. and Tu, J. (2019) Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion. Small Methods, 3, Article ID: 1900596.
https://doi.org/10.1002/smtd.201900596 |
[8] | Yao, H., Yuan, T., Zhang, L., Soule, L., Zhang, P., Pang, Y., Yang, J., Ma, Z.F. and Zheng, S. (2020) Spherical Sodium Metal Deposition and Growth Mechanism Study in Three-Electrode Sodium-Ion Full-Cell System. Journal of Power Sources, 455, Article ID: 227919. https://doi.org/10.1016/j.jpowsour.2020.227919 |
[9] | Lee, J.M., Singh, G., Cha, W., Kim, S., Yi, J., Hwang, S.J. and Vinu, A. (2020) Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Letters, 5, 1939-1966.
https://doi.org/10.1021/acsenergylett.0c00973 |
[10] | Wang, T., Hua, Y., Xu, Z. and Yu, J.S. (2021) Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes. Small, 18, Article ID: 2102250. https://doi.org/10.1002/smll.202102250 |
[11] | Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Z. and Guo, Z. (2018) Recent Progress on Sodium Ion Batteries: Potential High-Performance Anodes. Energy & Environmental Science, 11, 2310-2340. https://doi.org/10.1039/C8EE01023D |
[12] | Hwang, J.Y., Myung, S.T. and Sun, Y.K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614. https://doi.org/10.1039/C6CS00776G |
[13] | Qi, Y., Lu, Y., Ding, F., Zhang, Q., Li, H., Huang, X., Chen, L. and Hu, Y.S. (2019) Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries. Angewandte Chemie International Edition, 58, 4361-4365. https://doi.org/10.1002/anie.201900005 |
[14] | Fang, H., Gao, S., Zhu, Z., Ren, M., Wu, Q., Li, H. and Li, F. (2021) Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries. Chemical Research in Chinese Universities, 37, 189-199.
https://doi.org/10.1007/s40242-021-0449-3 |
[15] | Bauer, A., Song, J., Vail, S., Pan, W., Barker, J. and Lu, Y. (2018) The Scale-Up and Commercialization of Nonaqueous Na-Ion Battery Technologies. Advanced Energy Materials, 8, Article ID: 1702869. |
[16] | Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H. and Rojo, T. (2013) Update on Na-Based Battery Materials. A Growing Research Path. Energy & Environmental Science, 6, 2312-2337.
https://doi.org/10.1039/c3ee41031e |
[17] | Matios, E., Wang, H., Wang, C. and Li, W. (2019) Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review. Industrial & Engineering Chemistry Research, 58, 9758-9780.
https://doi.org/10.1021/acs.iecr.9b02029 |
[18] | Hasa, I., Mariyappan, S., Saurel, D., Adelhelm, P., Koposov, A.Y., Masquelier, C., Croguennec, L. and Casas-Cabanas, M. (2021) Challenges of Today for Na-Based Batteries of the Future: From Materials to Cell Metrics. Journal of Power Sources, 482, Article ID: 228872. https://doi.org/10.1016/j.jpowsour.2020.228872 |
[19] | Zhao, Y., Adair, K.R. and Sun, X. (2018) Recent Developments and Insights into the Understanding of Na Metal Anodes for Na-Metal Batteries. Energy & Environmental Science, 11, 2673-2695. https://doi.org/10.1039/C8EE01373J |
[20] | Liu, S., Tang, S., Zhang, X., Wang, A., Yang, Q.H. and Luo, J. (2017) Porous Al Current Collector for Dendrite-Free Na Metal Anodes. Nano Letters, 17, 5862-5868. https://doi.org/10.1021/acs.nanolett.7b03185 |
[21] | Zhao, Y., Wang, L.P., Sougrati, M.T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M. and Xu, Z. (2017) A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 7, Article ID: 1601424. |
[22] | Chi, S.S., Qi, X.G., Hu, Y.S. and Fan, L.Z. (2018) D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. Advanced Energy Materials, 8, Article ID: 1702764. |
[23] | Ma, L., Cui, J., Yao, S., Liu, X., Luo, Y., Shen, X. and Kim, J.K. (2020) Dendrite-Free Lithium Metal and Sodium Metal Batteries. Energy Storage Materials, 27, 522-554. https://doi.org/10.1016/j.ensm.2019.12.014 |
[24] | Yao, W., Zou, P., Wang, M., Zhan, H., Kang, F. and Yang, C. (2021) Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 4, 601-631. https://doi.org/10.1007/s41918-021-00106-6 |
[25] | Zhao, Y., Goncharova, L.V., Zhang, Q., Kaghazchi, P., Sun, Q., Lushington, A., Wang, B., Li, R. and Sun, X. (2017) Inorganic—Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. Nano Letters, 17, 5653-5659. https://doi.org/10.1021/acs.nanolett.7b02464 |
[26] | Wu, W., Hou, S., Zhang, C. and Zhang, L. (2020) A Dendrite-free Na—Na2S—Carbon Hybrid toward a Highly Stable and Superior Sodium Metal Anode. ACS Applied Materials & Interfaces, 12, 27300-27306.
https://doi.org/10.1021/acsami.0c07407 |
[27] | Tang, S., Qiu, Z., Wang, X.Y., Gu, Y., Zhang, X.G., Wang, W.W., Yan, J.W., Zheng, M.S., Dong, Q.F. and Mao, B.W. (2018) A Room-Temperature Sodium Metal Anode Enabled by a Sodiophilic Layer. Nano Energy, 48, 101-106.
https://doi.org/10.1016/j.nanoen.2018.03.039 |
[28] | Li, Y., Lu, Y., Adelhelm, P., Titirici, M.M. and Hu, Y.S. (2019) Intercalation Chemistry of Graphite: Alkali Metal Ions and beyond. Chemical Society Reviews, 48, 4655-4687. https://doi.org/10.1039/C9CS00162J |
[29] | Perveen, T., Siddiq, M., Shahzad, N., Ihsan, R., Ahmad, A. and Shahzad, M.I. (2020) Prospects in Anode Materials for Sodium ion Batteries—A Review. Renewable and Sustainable Energy Reviews, 119, Article ID: 109549.
https://doi.org/10.1016/j.rser.2019.109549 |
[30] | Balogun, M.S., Luo, Y., Qiu, W., Liu, P. and Tong, Y. (2016) A Review of Carbon Materials and Their Composites with Alloy Metals for Sodium Ion Battery Anodes. Carbon, 98, 162-178. https://doi.org/10.1016/j.carbon.2015.09.091 |
[31] | Zhang, Y., Xia, X., Liu, B., Deng, S., Xie, D., Liu, Q., Wang, Y., Wu, J., Wang, X. and Tu, J. (2019) Multiscale Graphene-Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 9, Article ID: 1803342.
https://doi.org/10.1002/aenm.201803342 |
[32] | Wang, H., Wang, C., Matios, E. and Li, W. (2017) Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes. Nano Letters, 17, 6808-6815.
https://doi.org/10.1021/acs.nanolett.7b03071 |
[33] | Sun, B., Li, P., Zhang, J., Wang, D., Munroe, P., Wang, C., Notten, P.H.L. and Wang, G. (2018) Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries. Advanced Materials, 30, e1801334. |
[34] | Zhao, Y., Yang, X., Kuo, L.Y., Kaghazchi, P., Sun, Q., Liang, J., Wang, B., Lushington, A., Li, R., Zhang, H. and Sun, X. (2018) High Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode. Small, 14, Article ID: 1703717. https://doi.org/10.1002/smll.201703717 |
[35] | Li, Y., Chen, M., Liu, B., Zhang, Y., Liang, X. and Xia, X. (2020) Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Advanced Energy Materials, 10, Article ID: 2000927. |
[36] | Yuan, X., Chen, S., Li, J., Xie, J., Yan, G., Liu, B., Li, X., Li, R., Pan, L. and Mai, W. (2021) Understanding the Improved Performance of Sulfur-Doped Interconnected Carbon Microspheres for Na-Ion Storage. Carbon Energy, 3, 615-626. https://doi.org/10.1002/cey2.98 |
[37] | Guo, Q., Sun, S., Kim, K.I., Zhang, H., Liu, X., Yan, C. and Xia, H. (2020) A Novel One-Step Reaction Sodium-Sulfur Battery with High Areal Sulfur Loading on Hierarchical Porous Carbon Fiber. Carbon Energy, 3, 440-448.
https://doi.org/10.1002/cey2.86 |
[38] | Lu, Q., Omar, A., Ding, L., Oswald, S., Hantusch, M., Giebeler, L., Nielsch, K. and Mikhailova, D. (2021) A Facile Method to Stabilize Sodium Metal Anodes towards High-Performance Sodium Batteries. Journal of Materials Chemistry A, 9, 9038-9047. https://doi.org/10.1039/D1TA00066G |
[39] | Zhu, M., Zhang, Y., Yu, F., Huang, Z., Zhang, Y., Li, L., Wang, G., Wen, L., Liu, H.K. and Dou, S.X. (2020) Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano Letters, 21, 619-627. https://doi.org/10.1021/acs.nanolett.0c04158 |
[40] | Meng, X., Yang, X.Q. and Sun, X. (2012) Emerging Applications of Atomic Layer Deposition for Lithium-Ion Battery Studies. Advanced Materials, 24, 3589-3615. https://doi.org/10.1002/adma.201200397 |
[41] | Liu, J. and Sun, X. (2014) Elegant Design of Electrode and Electrode/Electrolyte Interface in Lithium-Ion Batteries by Atomic Layer Deposition. Nanotechnology, 26, Article ID: 024001. https://doi.org/10.1088/0957-4484/26/2/024001 |
[42] | Luo, W., Lin, C.F., Zhao, O., Noked, M., Zhang, Y., Rubloff, G.W. and Hu, L. (2017) Ultrathin Surface Coating Enables the Stable Sodium Metal Anode. Advanced Energy Materials, 7, Article ID: 1601526. |
[43] | Zhao, Y., Goncharova, L.V., Lushington, A., Sun, Q., Yadegari, H., Wang, B., Xiao, W., Li, R. and Sun, X. (2017) Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Advanced Material, 29, Article ID: 1606663. |
[44] | Miao, X., Di, H., Ge, X., Zhao, D., Wang, P., Wang, R., Wang, C. and Yin, L. (2020) AlF3-Modified Anode-Electrolyte Interface for Effective Na Dendrites Restriction in NASICON-Based Solid-State Electrolyte. Energy Storage Materials, 30,170-178. https://doi.org/10.1016/j.ensm.2020.05.011 |
[45] | Kim, Y.J., Lee, H., Noh, H., Lee, J., Kim, S., Ryou, M.H., Lee, Y.M. and Kim, H.T. (2017) Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic—Organic Composite Protective Layer. ACS Applied Materials & Interfaces, 9, 6000-6006. https://doi.org/10.1021/acsami.6b14437 |
[46] | Wang, S., Jie, Y., Sun, Z., Cai, W., Chen, Y., Huang, F., Liu, Y., Li, X., Du, R. and Cao, R. (2020) An Implantable Artificial Protective Layer Enables Stable Sodium Metal Anodes. ACS Applied Energy Materials, 3, 8688-8694.
https://doi.org/10.1021/acsaem.0c01260 |
[47] | Lee, B., Paek, E., Mitlin, D. and Lee, S.W. (2019) Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 119, 5416-5460. https://doi.org/10.1021/acs.chemrev.8b00642 |
[48] | Sun, B., Xiong, P., Maitra, U., Langsdorf, D., Yan, K., Wang, C., Janek, J., Schroder, D. and Wang, G. (2020) Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries. Advanced Materials, 32, e1903891. |
[49] | Rodriguez, R., Loeffler, K.E., Nathan, S.S., Sheavly, J.K., Dolocan, A., Heller, A. and Mullins, C.B. (2017) In situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy Letters, 2, 2051-2057.
https://doi.org/10.1021/acsenergylett.7b00500 |
[50] | Lee, Y., Lee, J., Lee, J., Kim, K., Cha, A., Kang, S., Wi, T., Kang, S.J., Lee, H.W. and Choi, N.S. (2018) Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(Fluorosulfonyl)Imide Enables High-Performance Sodium Metal Electrodes. ACS Applied Materials & Interfaces, 10, 15270-15280. https://doi.org/10.1021/acsami.8b02446 |
[51] | Fan, J.J., Dai, P., Shi, C.G., Wen, Y., Luo, C.X., Yang, J., Song, C., Huang, L. and Sun, S.G. (2021) Synergistic Dual-Additive Electrolyte for Interphase Modification to Boost Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Functional Materials, 31, Article ID: 2010500. |
[52] | Shi, Q., Zhong, Y., Wu, M., Wang, H. and Wang, H. (2018) High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angewandte Chemie, 130, 9207-9210. https://doi.org/10.1002/ange.201803049 |
[53] | Wei, S., Choudhury, S., Xu, J., Nath, P., Tu, Z. and Archer, L.A. (2017) Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 29, Article ID: 1605512. |
[54] | Lu, Q., Wang, X., Omar, A. and Mikhailova, D. (2020) 3D Ni/Na Metal Anode for Improved Sodium Metal Batteries. Materials Letters, 275, Article ID: 128206. https://doi.org/10.1016/j.matlet.2020.128206 |
[55] | Xiong, W.S., Jiang, Y., Xia, Y., Qi, Y., Sun, W., He, D., Liu, Y. and Zhao, X.Z. (2018) A Robust 3D Host for Sodium Metal Anodes with Excellent Machinability and Cycling Stability. Chemical Communications, 54, 9406-9409.
https://doi.org/10.1039/C8CC03996H |
[56] | Wang, J., Kang, Q., Yuan, J., Fu, Q., Chen, C., Zhai, Z., Liu, Y., Yan, W., Li, A. and Zhang, J. (2021) Dendrite-Free Lithium and Sodium Metal Anodes with Deep Plating/Stripping Properties for Lithium and Sodium Batteries. Carbon Energy, 3, 153-166. https://doi.org/10.1002/cey2.94 |
[57] | Li, Z., Zhu, K., Liu, P. and Jiao, L. (2021) 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries. Advanced Energy Materials, 12, Article ID: 2100359. |
[58] | Stelmachowski, P., Duch, J., Sebastián, D., Lázaro, M.J. and Kotarba, A. (2021) Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. Materials, 14, Article 4984.
https://doi.org/10.3390/ma14174984 |
[59] | Sinha, S., Kim, H. and Robertson, A.W. (2021) Preparation and Application of 0D-2D Nanomaterial Hybrid Heterostructures for Energy Applications. Materials Today Advances, 12, Article ID: 100169.
https://doi.org/10.1016/j.mtadv.2021.100169 |
[60] | Luo, W., Zhang, Y., Xu, S., Dai, J., Hitz, E., Li, Y., Yang, C., Chen, C., Liu, B. and Hu, L. (2017) Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. Nano Letters, 17, 3792-3797. https://doi.org/10.1021/acs.nanolett.7b01138 |
[61] | Li, T., Sun, J., Gao, S., Xiao, B., Cheng, J., Zhou, Y., Sun, X., Jiang, F., Yan, Z. and Xiong, S. (2021) Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure. Advanced Energy Materials, 11, Article ID: 2003699. |
[62] | Liu, B., Lei, D., Wang, J., Zhang, Q., Zhang, Y., He, W., Zheng, H., Sa, B., Xie, Q., Peng, D.L. and Qu, B. (2020) 3D Uniform Nitrogen-Doped Carbon Skeleton for Ultra-Stable Sodium Metal Anode. Nano Research, 13, 2136-2142.
https://doi.org/10.1007/s12274-020-2820-y |
[63] | Wang, T.S., Liu, Y., Lu, Y.X., Hu, Y.S. and Fan, L.Z. (2018) Dendrite-Free Na Metal Plating/Stripping onto 3D Porous Cu Hosts. Energy Storage Materials, 15, 274-281. |
[64] | Lee, K., Lee, Y.J., Lee, M.J., Han, J., Lim, J., Ryu, K., Yoon, H., Kim, B.H., Kim, B.J. and Lee, S.W. (2022) A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anode-Free Sodium-Metal Batteries. Advanced Materials, 34, Article ID: 2109767. |
[65] | Dai, S., Wang, L., Cao, M., Zhong, Z., Shen, Y. and Wang, M. (2019) Design Strategies in Metal Chalcogenides Anode Materials for High-Performance Sodium-Ion Battery. Materials Today Energy, 12, 114-128.
https://doi.org/10.1016/j.mtener.2018.12.011 |
[66] | Wang, J.W., Liu, X.H., Mao, S.X. and Huang, J.Y. (2012) Microstructural Evolution of Tin Nanoparticles during in situ Sodium Insertion and Extraction. Nano Letters, 12, 5897-5902. https://doi.org/10.1021/nl303305c |
[67] | Wang, H., Matios, E., Wang, C., Luo, J., Lu, X., Hu, X., Zhang, Y. and Li, W. (2019) Tin Nanoparticles Embedded in a Carbon Buffer Layer as Preferential Nucleation Sites for Stable Sodium Metal Anodes. Journal of Materials Chemistry A, 7, 23747-23755. https://doi.org/10.1039/C9TA05176G |
[68] | Liu, Z., Yu, X.Y., Lou, X.W. and Paik, U. (2016) Sb@C Coaxial Nanotubes as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. Energy & Environmental Science, 9, 2314-2318.
https://doi.org/10.1039/C6EE01501H |
[69] | Farbod, B., Cui, K., Kalisvaart, W.P., Kupsta, M., Zahiri, B., Kohandehghan, A., Lotfabad, E.M., Li, Z., Luber, E.J. and Mitlin, D. (2014) Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys. ACS Nano, 8, 4415-4429. https://doi.org/10.1021/nn4063598 |
[70] | Ou, X., Yang, C., Xiong, X., Zheng, F., Pan, Q., Jin, C., Liu, M. and Huang, K. (2017) A New rGO-Overcoated Sb2Se3 Nanorods Anode for Na+ Battery: In situ X-Ray Diffraction Study on a Live Sodiation/Desodiation Process. Advanced Functional Materials, 27, Article ID: 1606242. |
[71] | Ren, X., Wang, J., Zhu, D., Li, Q., Tian, W., Wang, L., Zhang, J., Miao, L., Chu, P.K. and Huo, K. (2018) Sn-C Bonding Riveted SnSe Nanoplates Vertically Grown on Nitrogen-Doped Carbon Nanobelts for High-Performance Sodium-Ion Battery Anodes. Nano Energy, 54, 322-330. https://doi.org/10.1016/j.nanoen.2018.10.019 |
[72] | Ding, Y., Guo, X., Qian, Y., Zhang, L., Xue, L., Goodenough, J.B. and Yu, G. (2019) A Liquid-Metal-Enabled Versatile Organic Alkali-Ion Battery. Advanced Materials, 31, Article ID: 1806956. |
[73] | Wang, L., Swiatowska, J., Dai, S., Cao, M., Zhong, Z., Shen, Y. and Wang, M. (2019) Promises and Challenges of Alloy-Type and Conversion-Type Anode Materials for Sodium-Ion Batteries. Materials Today Energy, 11, 46-60.
https://doi.org/10.1016/j.mtener.2018.10.017 |
[74] | Shan, X., Zhong, Y., Zhang, L., Zhang, Y., Xia, X., Wang, X. and Tu, J. (2021) A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. The Journal of Physical Chemistry C, 125, 19060-19080. https://doi.org/10.1021/acs.jpcc.1c06277 |
[75] | Fan, L. and Li, X. (2018) Recent Advances in Effective Protection of Sodium Metal Anode. Nano Energy, 53, 630-642.
https://doi.org/10.1016/j.nanoen.2018.09.017 |