全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一道高等代数竞赛考研题的一题多解研究
A Study on Multiple Solutions to a Competition and Postgraduate Entrance Examination Question from Higher Algebra

DOI: 10.12677/PM.2023.1311346, PP. 3336-3341

Keywords: 矩阵,秩,分块初等变换,特征值与特征向量,线性变换的值域与核
Matrix
, Rank, Block Elementary Transformation, Eigenvalues and Eigenvectors, Range and Kernel of Linear Transformations

Full-Text   Cite this paper   Add to My Lib

Abstract:

矩阵理论是高等代数课程教学中重要的基础内容,而矩阵秩相关问题更是高等代数竞赛考研中一类常见问题。针对一道竞赛考研试题,我们给出了6种求解方法:利用矩阵的分块初等变换、利用多项式互素与矩阵的分块初等变换、利用矩阵秩的不等式、利用矩阵的特征值与特征向量、利用线性变换的值域和利用线性变换的核,这些方法对于理解高等代数矩阵问题的代数证法与几何证法,提高逻辑思维能力大有裨益。
The matrix theory is an important basic content in the teaching of advanced algebra courses, and the issue of matrix rank is a common problem in the competition and the postgraduate entrance examination. Six methods for solving a competition question or a postgraduate entrance exam question were provided, including using block elementary transformation of matrices, polynomial coprime and block elementary transformation of matrices, inequality of matrix rank, eigenvalues and eigenvectors of matrices, range of linear transformations, and kernel of linear transformations. All the methods are of great benefit for understanding the algebraic and geometric proofs of advanced algebraic matrix problems, and improving logical thinking abilities.

References

[1]  任芳国, 王甜甜. 关于矩阵秩的重要性质及应用[J]. 高等数学研究, 2022, 25(5): 28-31.
[2]  王守峰, 杨义川. 矩阵的Frobenius不等式的证明及应用——关于矩阵秩的习题课的一个教学设计[J]. 高等数学研究, 2022, 25(4): 93-95.
[3]  安玉莲, 罗雪梅. 线性映射视角下矩阵的秩[J]. 大学数学, 2022, 38(2): 89-92.
[4]  薛丽娜. 浅谈矩阵秩的求法[J]. 数学学习与研究, 2021(26): 2-3.
[5]  黄述亮. 关于矩阵秩的几个重要不等式[J]. 辽东学院学报(自然科学版), 2021, 28(1): 61-65.
https://doi.org/10.14168/j.issn.1673-4939.2021.01.12
[6]  陈国华, 廖小莲, 刘成志. 高等代数[M]. 成都: 西南交通大学出版社, 2022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133