全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义高斯Fibonacci和Lucas多项式及其恒等式
Generalized Gaussian Fibonacci and Lucas Polynomials and Their Identities

DOI: 10.12677/PM.2023.1311345, PP. 3325-3335

Keywords: 广义高斯Fibonacci多项式,广义高斯Lucas多项式,卡西尼恒等式,矩形表示
Generalized Gaussian Fibonacci Polynomials
, Generalized Gaussian Lucas Polynomials, Cassini’s Identities, Matrix Representation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文给出了广义高斯斐波那契多项式和广义高斯卢卡斯多项式的定义。我们研究了它们的一些的性质,通过它们的递推关系和性质及矩阵表示,我们也得到了它们之间的一些恒等式。此外,我们还证明了相应的卡西尼恒等式。
In this paper, we give the definition of Generalized Gaussian Fibonacci polynomials and Generalized Gaussian Lucas polynomials. We obtain some exciting properties of them, by their recurrence relation and properties and matrix representations, we also obtain some identities of them. Fur-thermore, we prove Cassini’s Identities for them and their polynomials.

References

[1]  Berzsenyi, G. (1977) Gaussian Fibonacci Numbers. Fibonacci Quarterly, 15, 233-236.
[2]  Pethe, S. and Horadam, A.F. (1986) Generalised Gaussian Fibonacci Numbers. Bulletin of the Australian Mathematical Society, 33, 37-48.
https://doi.org/10.1017/S0004972700002847
[3]  Prasad, B. (2019) A New Gaussian Fibonacci Matrices and Its Applications. Journal of Algebra and Related Topics, 7, 65-72.
[4]  ?zkan, E. and Ta?tan, M. (2020) On Gauss Fibo-nacci Polynomials, on Gauss Lucas Polynomials and Their Applications. Communications in Algebra, 48, 952-960.
https://doi.org/10.1080/00927872.2019.1670193
[5]  ?zkan, E. and Kulo?lu, B. (2021) On the New Narayana Polynomials, the Gauss Narayana Numbers and Their Polynomials. Asian-European Journal of Mathematics, 14, Article ID: 2150100.
https://doi.org/10.1142/S179355712150100X
[6]  Falcon, S. and Plaza, A. (2009) On k-Fibonacci Sequences and Polynomials and Their Derivatives. Chaos, Solitons & Fractals, 39, 1005-1019.
https://doi.org/10.1016/j.chaos.2007.03.007
[7]  Hoggatt Jr., V.E. and Lind, D.A. (1968) Symbolic Substitutions into Fibonacci Polynomials. The Fibonacci Quarterly, 6, 55-74.
[8]  Lee, G.Y. and Asci, M. (2012) Some Properties of the (p,q)-Fibonacciand (p,q)-Lucas Polynomials. Journal of Applied Mathematics, 2012, Article ID: 264842.
https://doi.org/10.1155/2012/264842
[9]  A???, M. and Gürel, E. (2013) Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers. Ars Combinatoria, 111, 53-62.
[10]  Ya?mur, T. (2019) Gaussian Pell-Lucas Polynomials. Communications in Mathematics and Applications, 10, 673-679.
https://doi.org/10.26713/cma.v10i4.804
[11]  Uygun, S. (2018) A New Generalization for Jacobsthal and Jacobsthal Lucas Sequences. Asian Journal of Mathematics and Physics, 2, 14-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133